Skip to main content
Log in

Interplanetary Dust, Meteoroids, Meteors and Meteorites

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Interplanetary dust particles and meteoroids mostly originate from comets and asteroids. Understanding their distribution in the Solar system, their dynamical behavior and their properties, sheds light on the current state and the dynamical behavior of the Solar system. Dust particles can endanger Earth-orbiting satellites and deep-space probes, and a good understanding of the spatial density and velocity distribution of dust and meteoroids in the Solar system is important for designing proper spacecraft shielding. The study of interplanetary dust and meteoroids provides clues to the formation of the Solar system. Particles having formed 4.5 billion years ago can survive planetary accretion and those that survived until now did not evolve significantly since then. Meteoroids and interplanetary dust can be observed by measuring the intensity and polarization of the zodiacal light, by observing meteors entering the Earth’s atmosphere, by collecting them in the upper atmosphere, polar ices and snow, and by detecting them with in-situ detectors on space probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://www.iau.org/science/scientific_bodies/commissions/F1/.

  2. https://cdaweb.sci.gsfc.nasa.gov/index.html/.

  3. Meteoritical Bull. Database: https://www.lpi.usra.edu/meteor/metbull.php.

References

  • J. Aléon, C. Engrand, L.A. Leshin, K.D. McKeegan, Oxygen isotopic composition of chondritic interplanetary dust particles: a genetic link between carbonaceous chondrites and comets. Geochim. Cosmochim. Acta 73, 4558–4575 (2009). https://doi.org/10.1016/j.gca.2009.04.034

    Article  ADS  Google Scholar 

  • N. Altobelli, S. Kempf, M. Landgraf, R. Srama, V. Dikarev, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. Space Phys. 108, 8032 (2003). https://doi.org/10.1029/2003JA009874

    Article  ADS  Google Scholar 

  • N. Altobelli, H. Krüger, R. Moissl, M. Landgraf, E. Grün, Influence of wall impacts on the Ulysses dust detector on understanding the interstellar dust flux. Planet. Space Sci. 52, 1287–1295 (2004). https://doi.org/10.1016/j.pss.2004.07.022

    Article  ADS  Google Scholar 

  • N. Altobelli, S. Kempf, H. Krüger, M. Landgraf, M. Roy, E. Grün, Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. J. Geophys. Res. Space Phys. 110(A9), 7102 (2005). https://doi.org/10.1029/2004JA010772

    Article  ADS  Google Scholar 

  • N. Altobelli, E. Grün, M. Landgraf, A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit. Astron. Astrophys. 448, 243–252 (2006). https://doi.org/10.1051/0004-6361:20053909

    Article  ADS  Google Scholar 

  • N. Altobelli, V. Dikarev, S. Kempf, R. Srama, S. Helfert, G. Moragas-Klostermeyer, M. Roy, E. Grün, Cassini/Cosmic Dust Analyzer in situ dust measurements between Jupiter and Saturn. J. Geophys. Res. Space Phys. 112, A07105 (2007). https://doi.org/10.1029/2006JA011978

    Article  ADS  Google Scholar 

  • N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, H. Kimura, V.J. Sterken, H.W. Hsu, J. Hillier, N. Khawaja, G. Moragas-Klostermeyer, J. Blum, M. Burton, R. Srama, S. Kempf, E. Grün, Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 352, 312–318 (2016). https://doi.org/10.1126/science.aac6397

    Article  ADS  Google Scholar 

  • D.J. Asher, D.I. Steel, Theoretical meteor radiants for macroscopic Taurid complex objects. Earth Moon Planets 68, 155–164 (1995). https://doi.org/10.1007/BF00671504

    Article  ADS  Google Scholar 

  • B. Augé, E. Dartois, C. Engrand, J. Duprat, M. Godard, L. Delauche, N. Bardin, C. Mejía, R. Martinez, G. Muniz, A. Domaracka, P. Boduch, H. Rothard, Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites. Astron. Astrophys. 592, A99 (2016). https://doi.org/10.1051/0004-6361/201527650

    Article  ADS  Google Scholar 

  • F. Bagenal, M. Horányi, D.J. McComas, R.L. McNutt, H.A. Elliot, M.E. Hill, L.E. Brown, P.A. Delamere, P. Kollman, S.M. Krimigis, M. Kusterer, C.M. Lisse, D.G. Mitchell, M. Piquette, A.R. Poppe, D.F. Strobel, J.R. Szalay, P. Valek, J. Vandegriff, S. Weidner, E.J. Zirnstein, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young (NHS Team), Pluto’s interaction with its space environment: solar wind, energetic particles, and dust. Science 351, 6279 (2016)

    Google Scholar 

  • W.J. Baggaley, The interstellar particle component measured by AMOR, in Meteroids 1998, ed. by W.J. Baggaley, V. Porubcan (1999), p. 265

    Google Scholar 

  • W.J. Baggaley, Advanced Meteor Orbit Radar observations of interstellar meteoroids. J. Geophys. Res. 105, 10353–10362 (2000). https://doi.org/10.1029/1999JA900383

    Article  ADS  Google Scholar 

  • W.J. Baggaley, S.H. Marsh, S. Close, Interstellar meteors. Dust Planet. Syst. 643, 27–32 (2007)

    ADS  Google Scholar 

  • M. Baguhl, E. Grün, M. Landgraf, In situ measurements of interstellar dust with the ULYSSES and Galileo spaceprobes. Space Sci. Rev. 78(1/2), 165–172 78:165–172 (1996)

    ADS  Google Scholar 

  • N. Bardin, J. Duprat, C. Engrand, G. Slodzian, D. Baklouti, E. Dartois, R. Brunetto, L. Delauche, M. Godard, T.D. Wu, J.L. Guerquin-Kern, D/H and 15N/14N isotopic ratios in organic matter of ultracarbonaceous Antarctic micrometeorites, in 78th Annual Meeting of the Meteoritical Society. LPI Contributions, vol. 1856 (2015), p. 5275

    Google Scholar 

  • A. Bardyn, D. Baklouti, H. Cottin, N. Fray, C. Briois, J. Paquette, O. Stenzel, C. Engrand, H. Fischer, K. Hornung, R. Isnard, Y. Langevin, H. Lehto, L. Le Roy, N. Ligier, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Rynö, R. Schulz, J. Silén, L. Thirkell, K. Varmuza, B. Zaprudin, J. Kissel, M. Hilchenbach, Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. Mon. Not. R. Astron. Soc. 469, S712–S722 (2017). https://doi.org/10.1093/mnras/stx2640

    Article  Google Scholar 

  • M. Battandier, L. Bonal, E. Quirico, P. Beck, C. Engrand, J. Duprat, Characterization of the organic matter and hydration state of a series of Antarctic micrometeorites, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 1475

    Google Scholar 

  • C. Beauge, S. Ferraz-Mello, Capture in exterior mean-motion resonances due to Poynting-Robertson drag. Icarus 110, 239–260 (1994). https://doi.org/10.1006/icar.1994.1119

    Article  ADS  Google Scholar 

  • R. Behrisch, W. Eckstein, Sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies. Topics in Applied Physics, vol. 110 (Springer, Berlin, 2007)

    Google Scholar 

  • E. Beitz, J. Blum, M.G. Parisi, J. Trigo-Rodriguez, The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids. Astrophys. J. 824, 12 (2016). https://doi.org/10.3847/0004-637X/824/1/12. arXiv:1604.02340

    Article  ADS  Google Scholar 

  • I. Belskaya, S. Fornasier, G. Tozzi, R. Gil-Hutton, A. Cellino, K. Antonyuk, Y.N. Krugly, A. Dovgopol, S. Faggi, Refining the asteroid taxonomy by polarimetric observations. Icarus 284, 30–42 (2017)

    ADS  Google Scholar 

  • O.E. Berg, U. Gerloff, More than two years of micrometeorite data from two Pioneer satellites, in Space Research XI, ed. by K.Y. Kondratyev, M.J. Rycroft, C. Sagan (1971), pp. 225–235

    Google Scholar 

  • O.E. Berg, F.F. Richardson, The Pioneer 8 cosmic dust experiment. Rev. Sci. Instrum. 40, 1333–1337 (1969). https://doi.org/10.1063/1.1683778

    Article  ADS  Google Scholar 

  • G. Berriman, N. Boggess, M. Hauser, T. Kelsall, C. Lisse, S. Moseley, W. Reach, R. Silverberg, Cobe dirbe near-infrared polarimetry of the zodiacal light: initial results. Astrophys. J. 431, L63–L66 (1994)

    ADS  Google Scholar 

  • I. Bertini, Main Belt comets: a new class of small bodies in the solar system. Planet. Space Sci. 59, 365–377 (2011). https://doi.org/10.1016/j.pss.2011.01.014

    Article  ADS  Google Scholar 

  • J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP. Appl. Phys. A 34, 73–94 (1984)

    ADS  Google Scholar 

  • A. Bischoff, E.R.D. Scott, K. Metzler, C.A. Goodrich, Nature and Origins of Meteoritic Breccias (2006), pp. 679–712

    Google Scholar 

  • A. Bischoff, M. Horstmann, M. Laubenstein, S. Haberer, Asteroid 2008 TC3—Almahata Sitta: not only a ureilitic meteorite, but a breccia containing many different achondritic and chondritic lithologies, in Lunar and Planetary Science Conference, vol. 41 (2010), p. 1763

    Google Scholar 

  • R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, A meteoroid stream survey using the Canadian Meteor Orbit Radar, III: mass distribution indices of six major meteor showers. Mon. Not. R. Astron. Soc. 414, 3322–3329 (2011a). https://doi.org/10.1111/j.1365-2966.2011.18633.x

    Article  ADS  Google Scholar 

  • R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, Mass distribution indices of sporadic meteors using radar data. Mon. Not. R. Astron. Soc. 412, 2033–2039 (2011b). https://doi.org/10.1111/j.1365-2966.2010.18038.x

    Article  ADS  Google Scholar 

  • P.A. Bland, T.B. Smith, A.J.T. Jull, F.J. Berry, A.W.R. Bevan, S. Cloudt, C.T. Pillinger, The flux of meteorites to the Earth over the last 50,000 years. Mon. Not. R. Astron. Soc. 283, 551 (1996). https://doi.org/10.1093/mnras/283.2.551

    Article  ADS  Google Scholar 

  • J. Blum, R. Schräpler, B.J.R. Davidsson, J.M. Trigo-Rodríguez, The physics of protoplanetesimal dust agglomerates, I: mechanical properties and relations to primitive bodies in the solar system. Astrophys. J. 652, 1768–1781 (2006). https://doi.org/10.1086/508017

    Article  ADS  Google Scholar 

  • D. Bockelée-Morvan, D. Gautier, F. Hersant, J.M. Huré, F. Robert, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets. Astron. Astrophys. 384, 1107–1118 (2002). https://doi.org/10.1051/0004-6361:20020086

    Article  ADS  Google Scholar 

  • K.J. Borkowski, E. Dwek, The fragmentation and vaporization of dust in grain-grain collisions. Astrophys. J. 454, 254–276 (1995)

    ADS  Google Scholar 

  • J. Borovička, P. Koten, P. Spurný, J. Boček, R. Štork, A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids. Icarus 174, 15–30 (2005). https://doi.org/10.1016/j.icarus.2004.09.011

    Article  ADS  Google Scholar 

  • W.F. Bottke, H.F. Levison, A. Morbidelli, K. Tsiganis, The collisional evolution of objects captured in the Outer Asteroid Belt during the late heavy bombardment, in Lunar and Planetary Science Conference, vol. 39 (2008), p. 1447

    Google Scholar 

  • W.F. Bottke Jr, D. Vokrouhlický, D.P. Rubincam, M. Broz, The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids (2002), pp. 395–408

    Google Scholar 

  • J.P. Bradley, Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science 265, 925–929 (1994). https://doi.org/10.1126/science.265.5174.925

    Article  ADS  Google Scholar 

  • J.P. Bradley, Interplanetary Dust Particles (Elsevier, Amsterdam, 2005), p. 689

    Google Scholar 

  • J.P. Bradley, D.E. Brownlee, Cometary particles—thin sectioning and electron beam analysis. Science 231, 1542–1544 (1986). https://doi.org/10.1126/science.231.4745.1542

    Article  ADS  Google Scholar 

  • J.P. Bradley, L.P. Keller, T.P. Snow, M.S. Hanner, G.J. Flynn, J.C. Gezo, S.J. Clemett, D.E. Brownlee, J.E. Bowey, An infrared spectral match between GEMS and interstellar grains. Science 285, 1716–1718 (1999). https://doi.org/10.1126/science.285.5434.1716

    Article  ADS  Google Scholar 

  • A.J. Brearley, R.H. Jones, Chondritic meteorites, in Planetary Materials, ed. by J.J. Papike (Mineralogical Society of America, Washington, 1998), pp. 1–398

    Google Scholar 

  • K.L.F. Brinton, C. Engrand, D.P. Glavin, J.L. Bada, M. Maurette, A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig. Life Evol. Biosph. 28, 413–424 (1998)

    ADS  Google Scholar 

  • D.T. Britt, G.J. Consolmagno, The porosity of dark meteorites and the structure of low-albedo asteroids. Icarus 146, 213–219 (2000). https://doi.org/10.1006/icar.2000.6374

    Article  ADS  Google Scholar 

  • P. Brown, R.J. Weryk, D.K. Wong, J. Jones, A meteoroid stream survey using the Canadian Meteor Orbit Radar, I: methodology and radiant catalogue. Icarus 195, 317–339 (2008). https://doi.org/10.1016/j.icarus.2007.12.002

    Article  ADS  Google Scholar 

  • P.G. Brown, A.R. Hildebrand, M.E. Zolensky, M. Grady, R.N. Clayton, T.K. Mayeda, E. Tagliaferri, R. Spalding, N.D. MacRae, E.L. Hoffman, D.W. Mittlefehldt, J.F. Wacker, J.A. Bird, M.D. Campbell, R. Carpenter, H. Gingerich, M. Glatiotis, E. Greiner, M.J. Mazur, P.J. McCausland, H. Plotkin, T. Rubak Mazur, The fall, recovery, orbit, and composition of the Tagish lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000). https://doi.org/10.1126/science.290.5490.320

    Article  ADS  Google Scholar 

  • D. Brownlee, Interplanetary dust. Rev. Geophys. 17(7), 1735–1743 (1979)

    ADS  Google Scholar 

  • D. Brownlee, P. Tsou, J. Aléon, C.M.O. Alexander, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, J. Borg, J.P. Bradley, A. Brearley, F. Brenker, S. Brennan, J.C. Bridges, N.D. Browning, J.R. Brucato, E. Bullock, M.J. Burchell, H. Busemann, A. Butterworth, M. Chaussidon, A. Cheuvront, M. Chi, M.J. Cintala, B.C. Clark, S.J. Clemett, G. Cody, L. Colangeli, G. Cooper, P. Cordier, C. Daghlian, Z. Dai, L. D’Hendecourt, Z. Djouadi, G. Dominguez, T. Duxbury, J.P. Dworkin, D.S. Ebel, T.E. Economou, S. Fakra, S.A.J. Fairey, S. Fallon, G. Ferrini, T. Ferroir, H. Fleckenstein, C. Floss, G. Flynn, I.A. Franchi, M. Fries, Z. Gainsforth, J.P. Gallien, M. Genge, M.K. Gilles, P. Gillet, J. Gilmour, D.P. Glavin, M. Gounelle, M.M. Grady, G.A. Graham, P.G. Grant, S.F. Green, F. Grossemy, L. Grossman, J.N. Grossman, Y. Guan, K. Hagiya, R. Harvey, P. Heck, G.F. Herzog, P. Hoppe, F. Hörz, J. Huth, I.D. Hutcheon, K. Ignatyev, H. Ishii, M. Ito, D. Jacob, C. Jacobsen, S. Jacobsen, S. Jones, D. Joswiak, A. Jurewicz, A.T. Kearsley, L.P. Keller, H. Khodja, A.L.D. Kilcoyne, J. Kissel, A. Krot, F. Langenhorst, A. Lanzirotti, L. Le, L.A. Leshin, J. Leitner, L. Lemelle, H. Leroux, M.C. Liu, K. Luening, I. Lyon, G. MacPherson, M.A. Marcus, K. Marhas, B. Marty, G. Matrajt, K. McKeegan, A. Meibom, V. Mennella, K. Messenger, S. Messenger, T. Mikouchi, S. Mostefaoui, T. Nakamura, T. Nakano, M. Newville, L.R. Nittler, I. Ohnishi, K. Ohsumi, K. Okudaira, D.A. Papanastassiou, R. Palma, M.E. Palumbo, R.O. Pepin, D. Perkins, M. Perronnet, P. Pianetta, W. Rao, F.J.M. Rietmeijer, F. Robert, D. Rost, A. Rotundi, R. Ryan, S.A. Sandford, C.S. Schwandt, T.H. See, D. Schlutter, J. Sheffield-Parker, A. Simionovici, S. Simon, I. Sitnitsky, C.J. Snead, M.K. Spencer, F.J. Stadermann, A. Steele, T. Stephan, R. Stroud, J. Susini, S.R. Sutton, Y. Suzuki, M. Taheri, S. Taylor, N. Teslich, K. Tomeoka, N. Tomioka, A. Toppani, J.M. Trigo-Rodríguez, D. Troadec, A. Tsuchiyama, A.J. Tuzzolino, T. Tyliszczak, K. Uesugi, M. Velbel, J. Vellenga, E. Vicenzi, L. Vincze, J. Warren, I. Weber, M. Weisberg, A.J. Westphal, S. Wirick, D. Wooden, B. Wopenka, P. Wozniakiewicz, I. Wright, H. Yabuta, H. Yano, E.D. Young, R.N. Zare, T. Zega, K. Ziegler, L. Zimmerman, E. Zinner, M. Zolensky, Comet 81P/Wild 2 under a microscope. Science 314, 1711 (2006). https://doi.org/10.1126/science.1135840

    Article  ADS  Google Scholar 

  • D.E. Brownlee, Cosmic dust—collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985). https://doi.org/10.1146/annurev.ea.13.050185.001051

    Article  ADS  Google Scholar 

  • D.L. Buczkowski, O.S. Barnouin-Jha, L.M. Prockter, 433 Eros lineaments: global mapping and analysis. Icarus 193, 39–52 (2008). https://doi.org/10.1016/j.icarus.2007.06.028

    Article  ADS  Google Scholar 

  • A. Buffington, M.M. Bisi, J.M. Clover, P.P. Hick, B.V. Jackson, T.A. Kuchar, S.D. Price, Measurements of the gegenschein brightness from the solar mass ejection imager (smei). Icarus 203(1), 124–133 (2009)

    ADS  Google Scholar 

  • A. Buffington, M.M. Bisi, J.M. Clover, P.P. Hick, B.V. Jackson, T.A. Kuchar, S.D. Price, Measurements and an empirical model of the zodiacal brightness as observed by the solar mass ejection imager (smei). Icarus 272, 88–101 (2016)

    ADS  Google Scholar 

  • J.A. Burns, P.L. Lamy, S. Soter, Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    Article  ADS  Google Scholar 

  • M.D. Campbell-Brown, High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus 196, 144–163 (2008). https://doi.org/10.1016/j.icarus.2008.02.022

    Article  ADS  Google Scholar 

  • M.D. Campbell-Brown, D. Koschny, Model of the ablation of faint meteors. Astron. Astrophys. 418, 751–758 (2004). https://doi.org/10.1051/0004-6361:20041001-1

    Article  ADS  Google Scholar 

  • M.D. Campbell-Brown, J. Kero, C. Szasz, A. Pellinen-Wannberg, R.J. Weryk, Photometric and ionization masses of meteors with simultaneous EISCAT UHF radar and intensified video observations. J. Geophys. Res. Space Phys. 117, A09323 (2012). https://doi.org/10.1029/2012JA017800

    Article  ADS  Google Scholar 

  • M.D. Campbell-Brown, J. Borovička, P.G. Brown, E. Stokan, High-resolution modelling of meteoroid ablation. Astron. Astrophys. 557, A41 (2013). https://doi.org/10.1051/0004-6361/201322005

    Article  ADS  Google Scholar 

  • M.D. Campbell-Brown, R. Blaauw, A. Kingery, Optical fluxes and meteor properties of the camelopardalid meteor shower. Icarus 277, 141–153 (2016). https://doi.org/10.1016/j.icarus.2016.05.001

    Article  ADS  Google Scholar 

  • Z. Ceplecha, J. Borovička, W.G. Elford, D.O. Revelle, R.L. Hawkes, V. Porubčan, M. Šimek, Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998). https://doi.org/10.1023/A:1005069928850

    Article  ADS  Google Scholar 

  • E. Charon, C. Engrand, K. Benzerara, H. Leroux, S. Swaraj, R. Belkhou, J. Duprat, E. Dartois, M. Godard, L. Delauche, A C-, N-, O-XANES/STXM and TEM study of organic matter and minerals in ultracarbonaceous Antarctic micrometeorites (UCAMMs), in Lunar and Planetary Science Conference, vol. 48 (2017), p. 2085

    Google Scholar 

  • A.A. Christou, R.M. Killen, M.H. Burger, The meteoroid stream of comet Encke at Mercury: implications for Mercury surface, space environment, geochemistry, and ranging observations of the exosphere. Geophys. Res. Lett. 42, 7311–7318 (2015). https://doi.org/10.1002/2015GL065361

    Article  ADS  Google Scholar 

  • F.J. Ciesla, Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318, 613 (2007). https://doi.org/10.1126/science.1147273

    Article  ADS  Google Scholar 

  • F.J. Ciesla, S.A. Sandford, Organic synthesis via irradiation and warming of ice grains in the solar nebula. Science 336, 452 (2012). https://doi.org/10.1126/science.1217291

    Article  ADS  Google Scholar 

  • B.C. Clark, S.F. Green, T.E. Economou, S.A. Sandford, M.E. Zolensky, N. McBride, D.E. Brownlee, Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams. J. Geophys. Res., Planets 109(E18), E12S03 (2004). https://doi.org/10.1029/2004JE002319

    Article  ADS  Google Scholar 

  • S.J. Clemett, X.D.F. Chillier, S. Gillette, R.N. Zare, M. Maurette, C. Engrand, G. Kurat, Observation of indigenous polycyclic aromatic hydrocarbons in ‘giant’ carbonaceous Antarctic micrometeorites. Orig. Life Evol. Biosph. 28, 425–448 (1998)

    ADS  Google Scholar 

  • C. Cordier, L. Folco, C. Suavet, C. Sonzogni, P. Rochette, Major, trace element and oxygen isotope study of glass cosmic spherules of chondritic composition: the record of their source material and atmospheric entry heating. Geochim. Cosmochim. Acta 75, 5203–5218 (2011). https://doi.org/10.1016/j.gca.2011.06.014

    Article  ADS  Google Scholar 

  • B.G. Cour-Palais, Meteoroid environment model-1969 [Near Earth to Lunar Surface]. NASA SP-8013, NASA (1969)

  • A. Czechowski, I. Mann, Formation and acceleration of nano dust in the inner heliosphere. Astrophys. J. 714, 89 (2010). https://doi.org/10.1088/0004-637X/714/1/89

    Article  ADS  Google Scholar 

  • E. Dartois, C. Engrand, R. Brunetto, J. Duprat, T. Pino, E. Quirico, L. Remusat, N. Bardin, G. Briani, S. Mostefaoui, G. Morinaud, B. Crane, N. Szwec, L. Delauche, F. Jamme, C. Sandt, P. Dumas, Ultracarbonaceous Antarctic micrometeorites, probing the solar system beyond the nitrogen snow-line. Icarus 224, 243–252 (2013). https://doi.org/10.1016/j.icarus.2013.03.002

    Article  ADS  Google Scholar 

  • E. Dartois, C. Engrand, J. Duprat, M. Godard, E. Charon, L. Delauche, C. Sandt, F. Borondics, Dome C ultracarbonaceous Antarctic micrometeorites. Infrared and Raman fingerprints. Astron. Astrophys. 609, A65 (2018). https://doi.org/10.1051/0004-6361/201731322. arXiv:1711.00647

    Article  ADS  Google Scholar 

  • B.T. de Gregorio, R.M. Stroud, G.D. Cody, L.R. Nittler, A.L. David Kilcoyne, S. Wirick, Correlated microanalysis of cometary organic grains returned by stardust. Meteorit. Planet. Sci. 46, 1376–1396 (2011). https://doi.org/10.1111/j.1945-5100.2011.01237.x

    Article  ADS  Google Scholar 

  • F.E. DeMeo, B. Carry, Solar system evolution from compositional mapping of the asteroid belt. Nature 505, 629 (2014)

    ADS  Google Scholar 

  • S. Dermott, P. Nicholson, J. Burns, J. Houck, Origin of the solar system dust bands discovered by iras. Nature 312(5994), 505–509 (1984)

    ADS  Google Scholar 

  • S.F. Dermott, K. Grogan, D.D. Durda, S. Jayaraman, T.J.J. Kehoe, S.J. Kortenkamp, M.C. Wyatt, Orbital Evolution of Interplanetary Dust (2001), p. 569

    Google Scholar 

  • V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, Modeling the sporadic meteoroid background cloud. Earth Moon Planets 95, 109–122 (2004). https://doi.org/10.1007/s11038-005-9017-y

    Article  ADS  Google Scholar 

  • V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, The new ESA meteoroid model. Adv. Space Res. 35, 1282–1289 (2005). https://doi.org/10.1016/j.asr.2005.05.014

    Article  ADS  Google Scholar 

  • N. Divine, Five populations of interplanetary meteoroids. J. Geophys. Res. 98(17), 029 (1993). https://doi.org/10.1029/93JE01203. 048

    Article  Google Scholar 

  • E. Dobrică, C. Engrand, J. Duprat, M. Gounelle, H. Leroux, E. Quirico, J.N. Rouzaud, Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices. Meteorit. Planet. Sci. 44, 1643–1661 (2009). https://doi.org/10.1111/j.1945-5100.2009.tb01196.x

    Article  ADS  Google Scholar 

  • E. Dobrică, C. Engrand, J. Duprat, M. Gounelle, A statistical overview of CONCORDIA Antarctic micrometeorites. Meteorit. Planet. Sci. Suppl. 73, 5213 (2010)

    ADS  Google Scholar 

  • E. Dobrică, C. Engrand, H. Leroux, J.N. Rouzaud, J. Duprat, Transmission electron microscopy of CONCORDIA ultracarbonaceous Antarctic micrometeorites (UCAMMs): mineralogical properties. Geochim. Cosmochim. Acta 76, 68–82 (2012). https://doi.org/10.1016/j.gca.2011.10.025

    Article  ADS  Google Scholar 

  • E. Dobricǎ, C. Engrand, E. Quirico, G. Montagnac, J. Duprat, Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites. Meteorit. Planet. Sci. 46, 1363–1375 (2011). https://doi.org/10.1111/j.1945-5100.2011.01235.x

    Article  ADS  Google Scholar 

  • L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort cloud formation and dynamics, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2004)

    Google Scholar 

  • G. Drolshagen, V. Dikarev, M. Landgraf, H. Krag, W. Kuiper, Comparison of meteoroid flux models for near earth space. Earth Moon Planets 102, 191–197 (2008). https://doi.org/10.1007/s11038-007-9199-6

    Article  ADS  Google Scholar 

  • J.D. Drummond, A test of comet and meteor shower associations. Icarus 45, 545–553 (1981). https://doi.org/10.1016/0019-1035(81)90020-8

    Article  ADS  Google Scholar 

  • A. Dubietis, R. Arlt, Taurid resonant-swarm encounters from two decades of visual observations. Mon. Not. R. Astron. Soc. 376, 890–894 (2007). https://doi.org/10.1111/j.1365-2966.2007.11488.x

    Article  ADS  Google Scholar 

  • R. Dumont, Phase function and polarization curve of interplanetary scatterers from zodiacal light photopolarimetry. Planet. Space Sci. 21(12), 2149–2155 (1973)

    ADS  Google Scholar 

  • R. Dumont, A.C. Levasseur-Regourd, Zodiacal light photopolarimetry, IV: annual variations of brightness and the symmetry plane of the zodiacal cloud: absence of solar-cycle variations. Astron. Astrophys. 64, 9–16 (1978)

    ADS  Google Scholar 

  • R. Dumont, A.L. Levasseur-Regourd, Zodiacal light gathered along the line of sight: retrieval of the local scattering coefficient from photometric surveys of the ecliptic plane. Planet. Space Sci. 33(1), 1–9 (1985)

    ADS  Google Scholar 

  • R. Dumont, F. Sanchez, Zodiacal light photopolarimetry, I: observations, reductions, disturbing phenomena, accuracy; II: gradients along the ecliptic and the phase functions of interplanetary matter. Astron. Astrophys. 38, 397–403 (1975a)

    ADS  Google Scholar 

  • R. Dumont, F. Sanchez, Zodiacal light photopolarimetry, II: gradients along the ecliptic and the phase functions of interplanetary matter. Astron. Astrophys. 38, 405 (1975b)

    ADS  Google Scholar 

  • J. Duprat, C. Engrand, M. Maurette, F. Naulin, G. Kurat, M. Gounelle, The micrometeorite mass flux as recorded in Dome C central Antarctic surface snow. Meteorit. Planet. Sci. Suppl. 41, 5239 (2006)

    ADS  Google Scholar 

  • J. Duprat, C. Engrand, M. Maurette, G. Kurat, M. Gounelle, C. Hammer, Micrometeorites from central Antarctic snow: the CONCORDIA collection. Adv. Space Res. 39, 605–611 (2007). https://doi.org/10.1016/j.asr.2006.05.029

    Article  ADS  Google Scholar 

  • J. Duprat, E. Dobrică, C. Engrand, J. Aléon, Y. Marrocchi, S. Mostefaoui, A. Meibom, H. Leroux, J.N. Rouzaud, M. Gounelle, F. Robert, Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science 328, 742 (2010). https://doi.org/10.1126/science.1184832

    Article  ADS  Google Scholar 

  • J. Duprat, N. Bardin, C. Engrand, D. Baklouti, R. Brunetto, E. Dartois, L. Delauche, M. Godard, J.L. Guerquin-Kern, G. Slodzian, T.D. Wu, Isotopic analysis of organic matter in ultra-carbonaceous antarctic micrometeorites, in 77th Annual Meeting of the Meteoritical Society. LPI Contributions, vol. 1800 (2014), p. 5341

    Google Scholar 

  • T.E. Economou, S.F. Green, D.E. Brownlee, B.C. Clark, Dust flux monitor instrument measurements during Stardust-NExT Flyby of Comet 9P/Tempel 1. Icarus 222, 526–539 (2013). https://doi.org/10.1016/j.icarus.2012.09.019

    Article  ADS  Google Scholar 

  • C. Engrand, M. Maurette, Carbonaceous micrometeorites from Antarctica. Meteorit. Planet. Sci. 33, 565–580 (1998). https://doi.org/10.1111/j.1945-5100.1998.tb01665.x

    Article  ADS  Google Scholar 

  • C. Engrand, E. Deloule, F. Robert, M. Maurette, G. Kurat, Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study. Meteorit. Planet. Sci. 34, 773–786 (1999a). https://doi.org/10.1111/j.1945-5100.1999.tb01390.x

    Article  ADS  Google Scholar 

  • C. Engrand, K.D. McKeegan, L.A. Leshin, Oxygen isotopic compositions of individual minerals in Antarctic micrometeorites: further links to carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2623–2636 (1999b). https://doi.org/10.1016/S0016-7037(99)00160-X

    Article  ADS  Google Scholar 

  • C. Engrand, K.D. McKeegan, L.A. Leshin, J.P. Bradley, D.E. Brownlee, Oxygen isotopic compositions of interplanetary dust particles: 16O-Excess in a GEMS-rich IDP, in Lunar and Planetary Science Conference, vol. 30 (1999c)

    Google Scholar 

  • C. Engrand, K.D. McKeegan, L.A. Leshin, G.F. Herzog, C. Schnabel, L.E. Nyquist, D.E. Brownlee, Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: toward a better comprehension of atmospheric entry heating effects. Geochim. Cosmochim. Acta 69, 5365–5385 (2005). https://doi.org/10.1016/j.gca.2005.07.002

    Article  ADS  Google Scholar 

  • C. Engrand, J. Duprat, M. Maurette, M. Gounelle, Fe-Ni sulfides in Concordia Antarctic micrometeorites, in Lunar and Planetary Science Conference, vol. 38 (2007), p. 1668

    Google Scholar 

  • C. Engrand, K. Benzerara, H. Leroux, J. Duprat, E. Dartois, N. Bardin, L. Delauche, Carbonaceous phases and mineralogy of ultracarbonaceous Antarctic micrometeorites identified by C- and N-XANES/STXM and TEM, in Lunar and Planetary Science Conference, vol. 46 (2015), p. 1902

    Google Scholar 

  • E.M. Epifani, C. Snodgrass, D. Perna, M. Dall’Ora, P. Palumbo, V. Della Corte, A. Alvarez-Candal, M. Melita, A. Rotundi, Photometry of the Oort Cloud comet C/2009 P1 (Garradd): pre-perihelion observations at 5.7 and 2.5 AU. Planet. Space Sci. 132, 23–31 (2016)

    ADS  Google Scholar 

  • D. Fixsen, E. Dwek, The zodiacal emission spectrum as determined by cobe and its implications. Astrophys. J. 578(2), 1009 (2002)

    ADS  Google Scholar 

  • C. Floss, F.J. Stadermann, Isotopically primitive interplanetary dust particles of cometary origin: evidence from nitrogen isotopic compositions, in Lunar and Planetary Science Conference, ed. by S. Mackwell, E. Stansbery (2004), p. 1281

    Google Scholar 

  • G.J. Flynn, D.D. Durda, Chemical and mineralogical size segregation in the impact disruption of inhomogeneous, anhydrous meteorites. Planet. Space Sci. 52, 1129–1140 (2004). https://doi.org/10.1016/j.pss.2004.07.010

    Article  ADS  Google Scholar 

  • G.J. Flynn, S. Wirick, L.P. Keller, Organic grain coatings in primitive interplanetary dust particles: implications for grain sticking in the Solar Nebula. Earth Planets Space 65, 1159–1166 (2013). https://doi.org/10.5047/eps.2013.05.007

    Article  ADS  Google Scholar 

  • G.J. Flynn, L.R. Nittler, C. Engrand, Composition of cosmic dust: sources and implications for the early solar system. Elements 12(3), 177 (2016). https://doi.org/10.2113/gselements.12.3.177

    Article  Google Scholar 

  • S. Fornasier, M. Lazzarin, C. Barbieri, M.A. Barucci, Spectroscopic comparison of aqueous altered asteroids with CM2 carbonaceous chondrite meteorites. Astron. Astrophys. Suppl. Ser. 135, 65–73 (1999). https://doi.org/10.1051/aas:1999161

    Article  ADS  Google Scholar 

  • N. Fray, A. Bardyn, H. Cottin, K. Altwegg, D. Baklouti, C. Briois, L. Colangeli, C. Engrand, H. Fischer, A. Glasmachers, E. Grün, G. Haerendel, H. Henkel, H. Höfner, K. Hornung, E.K. Jessberger, A. Koch, H. Krüger, Y. Langevin, H. Lehto, K. Lehto, L. Le Roy, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Paquette, F. Raulin, J. Rynö, R. Schulz, J. Silén, S. Siljeström, W. Steiger, O. Stenzel, T. Stephan, L. Thirkell, R. Thomas, K. Torkar, K. Varmuza, K.P. Wanczek, B. Zaprudin, J. Kissel, M. Hilchenbach, High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko. Nature 538, 72–74 (2016). https://doi.org/10.1038/nature19320

    Article  ADS  Google Scholar 

  • N. Fray, A. Bardyn, H. Cottin, D. Baklouti, C. Briois, C. Engrand, H. Fischer, K. Hornung, R. Isnard, Y. Langevin, H. Lehto, L. Le Roy, E.M. Mellado, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Paquette, J. Rynö, R. Schulz, J. Silén, S. Siljeström, O. Stenzel, L. Thirkell, K. Varmuza, B. Zaprudin, J. Kissel, M. Hilchenbach, Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469, S506–S516 (2017). https://doi.org/10.1093/mnras/stx2002

    Article  Google Scholar 

  • P.C. Frisch, J.M. Dorschner, J. Geiss, J.M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A.P. Jones, W. Krätschmer, T.J. Linde, G.E. Morfill, W. Reach, J.D. Slavin, J. Svestka, A.N. Witt, G.P. Zank, Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999)

    ADS  Google Scholar 

  • A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006). https://doi.org/10.1126/science.1125841

    Article  ADS  Google Scholar 

  • M. Fulle, Dust from short-period comet P/Schwassmann-Wachmann 1 and replenishment of the interplanetary dust cloud. Nature 359, 42–44 (1992)

    ADS  Google Scholar 

  • M. Fulle, Motion of Cometary Dust (2004), pp. 565–575

    Google Scholar 

  • M.J. Gaffey, T.B. McCord, Asteroid surface materials—mineralogical characterizations from reflectance spectra. Space Sci. Rev. 21, 555–628 (1978). https://doi.org/10.1007/BF00240908

    Article  ADS  Google Scholar 

  • D.P. Galligan, W.J. Baggaley, Wavelet enhancement for detecting shower structure in radar meteoroid data, I: methodology, in IAU Colloq. 181: Dust in the Solar System and Other Planetary Systems, vol. 15, ed. by S.F. Green, I.P. Williams, J.A.M. McDonnell, N. McBride (2002), p. 42

    Google Scholar 

  • D.P. Galligan, W.J. Baggaley, The orbital distribution of radar-detected meteoroids of the Solar system dust cloud. Mon. Not. R. Astron. Soc. 353, 422–446 (2004). https://doi.org/10.1111/j.1365-2966.2004.08078.x

    Article  ADS  Google Scholar 

  • D.P. Galligan, W.J. Baggaley, The radiant distribution of AMOR radar meteors. Mon. Not. R. Astron. Soc. 359, 551–560 (2005). https://doi.org/10.1111/j.1365-2966.2005.08918.x

    Article  ADS  Google Scholar 

  • M.J. Genge, Koronis asteroid dust within Antarctic ice. Geology 36(9), 687–690 (2008). https://doi.org/10.1130/G24493A.1

    Article  ADS  Google Scholar 

  • M.J. Genge, M.M. Grady, R. Hutchison, The textures and compositions of fine-grained Antarctic micrometeorites—implications for comparisons with meteorites. Geochim. Cosmochim. Acta 61, 5149 (1997). https://doi.org/10.1016/S0016-7037(97)00308-6

    Article  ADS  Google Scholar 

  • M.J. Genge, A. Gileski, M.M. Grady, Chondrules in Antarctic micrometeorites. Meteorit. Planet. Sci. 40, 225 (2005). https://doi.org/10.1111/j.1945-5100.2005.tb00377.x

    Article  ADS  Google Scholar 

  • M.J. Genge, C. Engrand, M. Gounelle, S. Taylor, The classification of micrometeorites. Meteorit. Planet. Sci. 43, 497–515 (2008). https://doi.org/10.1111/j.1945-5100.2008.tb00668.x

    Article  ADS  Google Scholar 

  • R. Giese, Light scattering by small particles and models of interplanetary matter derived from the zodiacal light. Space Sci. Rev. 1(3), 589–611 (1963)

    ADS  Google Scholar 

  • R. Giese, Optical properties of single-component zodiacal light models. Planet. Space Sci. 21(3), 513–521 (1973)

    ADS  Google Scholar 

  • R. Giese, K. Weiss, R. Zerull, T. Ono, Large fluffy particles-a possible explanation of the optical properties of interplanetary dust. Astron. Astrophys. 65, 265–272 (1978)

    ADS  Google Scholar 

  • J.C. Gómez Martín, D.L. Bones, J.D. Carrillo-Sánchez, A.D. James, J.M. Trigo-Rodríguez, B. Fegley Jr., J.M.C. Plane, Novel experimental simulations of the atmospheric injection of meteoric metals. Astrophys. J. 836, 212 (2017). https://doi.org/10.3847/1538-4357/aa5c8f

    Article  ADS  Google Scholar 

  • M. Gounelle, M.E. Zolensky, J.C. Liou, P.A. Bland, O. Alard, Mineralogy of carbonaceous chondritic microclasts in howardites: identification of C2 fossil micrometeorites. Geochim. Cosmochim. Acta 67, 507–527 (2003). https://doi.org/10.1016/S0016-7037(02)00985-7

    Article  ADS  Google Scholar 

  • M. Gounelle, C. Engrand, O. Alard, P.A. Bland, M.E. Zolensky, S.S. Russell, J. Duprat, Hydrogen isotopic composition of water from fossil micrometeorites in howardites. Geochim. Cosmochim. Acta 69, 3431–3443 (2005a). https://doi.org/10.1016/j.gca.2004.12.021

    Article  ADS  Google Scholar 

  • M. Gounelle, C. Engrand, M. Maurette, G. Kurat, K.D. McKeegan, F. Brandsttter, Small Antarctic micrometeorites: a mineralogical and in situ oxygen isotope study. Meteorit. Planet. Sci. 40, 917 (2005b). https://doi.org/10.1111/j.1945-5100.2005.tb00163.x

    Article  ADS  Google Scholar 

  • J. Gradie, E. Tedesco, Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982). https://doi.org/10.1126/science.216.4553.1405

    Article  ADS  Google Scholar 

  • M.M. Grady, C.T. Pillinger, Carbon isotope relationships in winonaites and forsterite chondrites. Geochim. Cosmochim. Acta 50, 255–263 (1986). https://doi.org/10.1016/0016-7037(86)90174-2

    Article  ADS  Google Scholar 

  • A.L. Graps, E. Grün, H. Svedhem, H. Krüger, M. Horányi, A. Heck, S. Lammers, Io as a source of the jovian dust streams. Nature 405, 48–50 (2000)

    ADS  Google Scholar 

  • S.F. Green, J.A.M. McDonnell, N. McBride, M.T.S.H. Colwell, A.J. Tuzzolino, T.E. Economou, P. Tsou, B.C. Clark, D.E. Brownlee, The dust mass distribution of comet 81P/Wild 2. J. Geophys. Res., Planets 109(E18), E12S04 (2004). https://doi.org/10.1029/2004JE002318

    Article  ADS  Google Scholar 

  • A. Grigorieva, P. Thébault, P. Artymowicz, A. Brandeker, Survival of icy grains in debris discs. The role of photosputtering. Astron. Astrophys. 475, 755–764 (2007a). https://doi.org/10.1051/0004-6361:20077686. arXiv:0709.0811

    Article  ADS  Google Scholar 

  • A. Grigorieva, P. Thébault, P. Artymowicz, A. Brandeker, Survival of icy grains in debris disks: the role of photosputtering. Astron. Astrophys. 475, 755–764 (2007b)

    ADS  Google Scholar 

  • M. Gritsevich, D. Koschny, Constraining the luminous efficiency of meteors. Icarus 212, 877–884 (2011). https://doi.org/10.1016/j.icarus.2011.01.033

    Article  ADS  Google Scholar 

  • E. Grün, M. Landgraf, Collisional consequences of big interstellar grains. J. Geophys. Res. 105, 10,291–10,298 (2000)

    ADS  Google Scholar 

  • E. Grün, N. Pailer, H. Fechtig, J. Kissel, Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by HELIOS 1. Planet. Space Sci. 28, 333–349 (1980). https://doi.org/10.1016/0032-0633(80)90022-7

    Article  ADS  Google Scholar 

  • E. Grün, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985). https://doi.org/10.1016/0019-1035(85)90121-6

    Article  ADS  Google Scholar 

  • E. Grün, H. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnel, G. Morfill, J. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993a)

    ADS  Google Scholar 

  • E. Grün, H.A. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Manner, M. Horanyi, J. Kissel et al., Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362(6419), 428–430 (1993b)

    ADS  Google Scholar 

  • E. Grün, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, J.L. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft. Nature 362, 428–430 (1993c). https://doi.org/10.1038/362428a0

    Article  ADS  Google Scholar 

  • E. Grün, B. Gustafson, I. Mann, M. Baguhl, G.E. Morfill, P. Staubach, A. Taylor, H.A. Zook, Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994)

    ADS  Google Scholar 

  • E. Grün, M. Baguhl, D.P. Hamilton, R. Riemann, H.A. Zook, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, K.K. Khurana, J. Kissel, M. Kivelson, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Constraints from Galileo observations on the origin of jovian dust streams. Nature 381, 395–398 (1996). https://doi.org/10.1038/381395a0

    Article  ADS  Google Scholar 

  • E. Grün, P. Staubach, M. Baguhl, D.P. Hamilton, H.A. Zook, S. Dermott, B.A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M.S. Hanner, C. Polanskey, M. Horányi, B.A. Lindblad, I. Mann, J.A.M. McDonnell, G.E. Morfill, G. Schwehm, South-north and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288 (1997). https://doi.org/10.1006/icar.1997.5789

    Article  ADS  Google Scholar 

  • E. Grün, M. Baguhl, H. Svedhem, H.A. Zook, In situ Measurements of Cosmic Dust (2001), p. 295

    Google Scholar 

  • E. Grün, R. Srama, M. Horányi, H. Krüger, R. Soja, V. Sterken, Z. Sternovsky, P. Strub, Comparative analysis of the ESA and NASA interplanetary meteoroid enviroment models, in 6th European Conference on Space Debris. ESA Special Publication, vol. 723 (2013), p. 36

    Google Scholar 

  • P.S. Gural, Fully correcting for the spread in meteor radiant positions due to gravitational attraction. J. Int.l Meteor Org. 29, 134–138 (2001)

    ADS  Google Scholar 

  • D.A. Gurnett, E. Grun, D. Gallagher, W.S. Kurth, F.L. Scarf, Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus 53, 236–254 (1983). https://doi.org/10.1016/0019-1035(83)90145-8

    Article  ADS  Google Scholar 

  • D.A. Gurnett, T.F. Averkamp, F.L. Scarf, E. Grun, Dust particles detected near Giacobini-Zinner by the ICE plasma wave instrument. Geophys. Res. Lett. 13, 291–294 (1986). https://doi.org/10.1029/GL013i003p00291

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, K.L. Scarf, J.A. Burns, J.N. Cuzzi, Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument. J. Geophys. Res. Space Phys. 92, 14,959–14,968 (1987). https://doi.org/10.1029/JA092iA13p14959

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, L.J. Granroth, S.C. Allendorf, R.L. Poynter, Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. Space Phys. 96, 19 (1991). https://doi.org/10.1029/91JA01270

    Article  Google Scholar 

  • D.A. Gurnett, J.A. Ansher, W.S. Kurth, L.J. Granroth, Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24(24), 3125–3128 (1997)

    ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Meyer, R. Boström, G. Gustafsson, J.E. Wahlund, L. Åhlen, H.O. Rucker, H.P. Ladreiter, W. Macher, L.J.C. Woolliscroft, H. Alleyne, M.L. Kaiser, M.D. Desch, W.M. Farrell, C.C. Harvey, P. Louarn, P.J. Kellogg, K. Goetz, A. Pedersen, The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004). https://doi.org/10.1007/s11214-004-1434-0

    Article  ADS  Google Scholar 

  • B.A.S. Gustafson, Comet ejection and dynamics of nonspherical dust particles and meteoroids. Astrophys. J. 337, 945–949 (1989). https://doi.org/10.1086/167164

    Article  ADS  Google Scholar 

  • B.A.S. Gustafson, Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci. 22, 553–595 (1994). https://doi.org/10.1146/annurev.ea.22.050194.003005

    Article  ADS  Google Scholar 

  • E. Hadamcik, A.C. Levasseur-Regourd, Imaging polarimetry of cometary dust: different comets and phase angles. J. Quant. Spectrosc. Radiat. Transf. 79, 661–678 (2003)

    ADS  Google Scholar 

  • M. Hajduková Jr, On the frequency of interstellar meteoroids. Astron. Astrophys. 288, 330–334 (1994)

    ADS  Google Scholar 

  • M. Hajduková, Meteors in the IAU meteor data center on hyperbolic orbits. Earth Moon Planets 102, 67–71 (2008). https://doi.org/10.1007/s11038-007-9171-5

    Article  ADS  Google Scholar 

  • M. Hajduková Jr, Interstellar meteoroids in the Japanese tv catalogue. Publ. Astron. Soc. Jpn. 63, 481–487 (2011). https://doi.org/10.1093/pasj/63.3.481

    Article  ADS  Google Scholar 

  • M. Hajduková Jr, The occurrence of interstellar particles in the vicinity of the Sun an overview—25 years of research, in International Meteor Conference Egmond, ed. by A. Roggemans, P. Roggemans, the Netherlands, 2–5 June 2016 (2016), pp. 105–110

    Google Scholar 

  • M. Hajduková, L. Kornoš, J. Tóth, Frequency of hyperbolic and interstellar meteoroids. Meteorit. Planet. Sci. 49, 63–68 (2014a). https://doi.org/10.1111/maps.12119

    Article  ADS  Google Scholar 

  • M. Hajduková Jr, L. Kornoš, J. Tóth, Hyperbolic orbits in the EDMOND. Meteoroids 2013, 289–295 (2014b)

    ADS  Google Scholar 

  • M. Hajduková, V.J. Sterken, P. Wiegert, Interstellar Meteoroids (2018)

    Google Scholar 

  • I. Halliday, A.A. Griffin, A.T. Blackwell, Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteorit. Planet. Sci. 31, 185–217 (1996). https://doi.org/10.1111/j.1945-5100.1996.tb02014.x

    Article  ADS  Google Scholar 

  • D.P. Hamilton, E. Grün, M. Baguhl, Electromagnetic escape of dust from the solar system. Int. Astron. Union Colloq. 150, 31 (1996). https://doi.org/10.1017/S0252921100501225

    Article  Google Scholar 

  • D. Han, A.R. Poppe, M. Piquette, E. Grün, M. Horányi, Constraints on dust production in the Edgeworth-Kuiper Belt from Pioneer 10 and New Horizons measurement. Geophys. Res. Lett. 38, L24102 (2011)

    ADS  Google Scholar 

  • M. Hanner, R. Giese, K. Weiss, R. Zerull, On the definition of albedo and application to irregular particles. Astron. Astrophys. 104, 42–46 (1981)

    ADS  Google Scholar 

  • M.S. Hanner, M.E. Zolensky, The mineralogy of cometary dust, in Lecture Notes in Physics, vol. 815, ed. by T. Henning (Springer, Berlin, 2010), pp. 203–232. https://doi.org/10.1007/978-3-642-13259-9_4

    Chapter  Google Scholar 

  • V. Haudebourg, M. Cabane, A.C. Levasseur-Regourd, Theoretical polarimetric responses of fractal aggregates, in relation with experimental studies of dust in the solar system. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 24(5), 603–608 (1999)

    Google Scholar 

  • R.L. Hawkes, S.C. Woodworth, Optical detection of two meteoroids from interstellar space. J. R. Astron. Soc. Can. 91, 218 (1997)

    ADS  Google Scholar 

  • G.S. Hawkins, Variation in the occurrence rate of meteors. Astron. J. 61, 386 (1956). https://doi.org/10.1086/107367

    Article  ADS  Google Scholar 

  • G.S. Hawkins, Symposium: small meteoric particles in the earth’s neighborhood: radar determination of meteor orbits. Astron. J. 67, 241 (1962). https://doi.org/10.1086/108702

    Article  ADS  Google Scholar 

  • G.S. Hawkins, The Harvard radio meteor project. Smithson. Contrib. Astrophys. 7, 53 (1963)

    ADS  Google Scholar 

  • G.S. Hawkins, E.K.L. Upton, The influx rate of meteors in the Earth’s atmosphere. Astrophys. J. 128, 727 (1958). https://doi.org/10.1086/146585

    Article  ADS  Google Scholar 

  • G.F.H. Herzog, S. Xue, G.S. Hall, L.E. Nyquist, C. Shih, H. Wiesmann, D.E. Brownlee, Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: implications for origin and composition of the parent micrometeoroids. Geochim. Cosmochim. Acta 63, 1443–1457 (1999). https://doi.org/10.1016/S0016-7037(99)00011-3

    Article  ADS  Google Scholar 

  • K.A. Hill, L.A. Rogers, R.L. Hawkes, High geocentric velocity meteor ablation. Astron. Astrophys. 444, 615–624 (2005). https://doi.org/10.1051/0004-6361:20053053

    Article  ADS  Google Scholar 

  • J.K. Hillier, S.F. Green, N. McBride, N. Altobelli, F. Postberg, S. Kempf, J. Schwanethal, R. Srama, J.A.M. McDonnell, E. Grün, Interplanetary dust detected by the Cassini CDA Chemical Analyser. Icarus 190, 643–654 (2007). https://doi.org/10.1016/j.icarus.2007.03.024

    Article  ADS  Google Scholar 

  • T. Hiroi, C.M. Pieters, M.E. Zolensky, M.E. Lipschutz, Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science 261, 1016–1018 (1993). https://doi.org/10.1126/science.261.5124.1016

    Article  ADS  Google Scholar 

  • H.J. Hoffmann, H. Fechtig, E. Grün, J. Kissel, First results of the micrometeoroid experiment S 215 on the HEOS 2 satellite. Planet. Space Sci. 23, 215–224 (1975a). https://doi.org/10.1016/0032-0633(75)90080-X

    Article  ADS  Google Scholar 

  • H.J. Hoffmann, H. Fechtig, E. Grün, J. Kissel, Temporal fluctuations and anisotropy of the micrometeoroid flux in the earth-moon system measured by HEOS 2. Planet. Space Sci. 23, 985–991 (1975b). https://doi.org/10.1016/0032-0633(75)90186-5

    Article  ADS  Google Scholar 

  • P. Hoppe, G. Kurat, J. Walter, M. Maurette, Trace elements and oxygen isotopes in a CAI-bearing micrometeorite from Antarctica, in Lunar and Planetary Science Conference, vol. 26 (1995)

    Google Scholar 

  • P. Horálek, L.L. Christensen, D. Nesvornỳ, R. Davies, Light phenomena over the eso observatories, III: zodiacal light. Messenger 164, 45–47 (2016)

    ADS  Google Scholar 

  • M. Horányi et al., The student dust counter on the New Horizons mission. Space Sci. Rev. 140, 387–402 (2008)

    ADS  Google Scholar 

  • F. Horz, R.P. Bernhard, Compositional analysis and classification of projectile residues in LDEF impact craters. NASA STI/Recon technical report No. 93 (1992)

  • F. Hörz, E. Schneider, D.E. Gault, J.B. Hartung, D.E. Brownlee, Catastrophic rupture of lunar rocks—a Monte Carlo simulation. Moon 13, 235–258 (1975). https://doi.org/10.1007/BF00567517

    Article  ADS  Google Scholar 

  • W. Huang, X. Chu, C.S. Gardner, J.D. Carrillo-Sánchez, W. Feng, J.M.C. Plane, D. Nesvorný, Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere. Geophys. Res. Lett. 42, 169–175 (2015). https://doi.org/10.1002/2014GL062390

    Article  ADS  Google Scholar 

  • D.H. Humes, Results of Pioneer 10 and 11 meteoroid experiments: interplanetary and near-Saturn. J. Geophys. Res. 85(A11), 5841–5852 (1980)

    ADS  Google Scholar 

  • G.R. Huss, The survival of presolar grains in solar system bodies, in American Institute of Physics Conference Series, vol. 402, ed. by T.J. Bernatowicz, E. Zinner (1997), pp. 721–748. https://doi.org/10.1063/1.53338

    Chapter  Google Scholar 

  • G.R. Huss, A.P. Meshik, J.B. Smith, C.M. Hohenberg, Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 67, 4823–4848 (2003). https://doi.org/10.1016/j.gca.2003.07.019

    Article  ADS  Google Scholar 

  • G.R. Huss, A.E. Rubin, J.N. Grossman, Thermal Metamorphism in Chondrites (2006), pp. 567–586

    Google Scholar 

  • M. Ishiguro, R. Nakamura, Y. Fujii, K. Morishige, H. Yano, H. Yasuda, S. Yokogawa, T. Mukai, First detection of visible zodiacal dust bands from ground-based observations. Astrophys. J. 511(1), 432 (1999)

    ADS  Google Scholar 

  • M. Ishiguro, H. Yang, F. Usui, J. Pyo, M. Ueno, T. Ootsubo, S.M. Kwon, T. Mukai, High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J. 767(1), 75 (2013)

    ADS  Google Scholar 

  • H.A. Ishii, J.P. Bradley, Z.R. Dai, M. Chi, A.T. Kearsley, M.J. Burchell, N.D. Browning, F. Molster, Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319, 447 (2008). https://doi.org/10.1126/science.1150683

    Article  ADS  Google Scholar 

  • I. Jakšová, V. Porubčan, J. Klačka, Structure and sources of the sporadic meteor background from video observations. Publ. Astron. Soc. Jpn. 67, 99 (2015). https://doi.org/10.1093/pasj/psv068

    Article  ADS  Google Scholar 

  • D. James, M. Horányi, V. Hoxie, Polyvinylidene fluoride detector response to particle impacts. Rev. Sci. Instrum. 81(3), 034501 (2010). https://doi.org/10.1063/1.3340880

    Article  ADS  Google Scholar 

  • D. Janches, S. Close, J.L. Hormaechea, N. Swarnalingam, A. Murphy, D. O’Connor, B. Vandepeer, B. Fuller, D.C. Fritts, C. Brunini, The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): an initial sporadic meteoroid orbital survey in the southern sky. Astrophys. J. 809, 36 (2015). https://doi.org/10.1088/0004-637X/809/1/36

    Article  ADS  Google Scholar 

  • P. Jenniskens, Quantitative meteor spectroscopy: elemental abundances. Adv. Space Res. 39, 491–512 (2007). https://doi.org/10.1016/j.asr.2007.03.040

    Article  ADS  Google Scholar 

  • P. Jenniskens, Meteoroid Streams and the Zodiacal Cloud (2015), pp. 281–295. https://doi.org/10.2458/azu_uapress_9780816532131-ch015

    Book  Google Scholar 

  • P. Jenniskens, Meteor showers in review. Planet. Space Sci. 143, 116–124 (2017). https://doi.org/10.1016/j.pss.2017.01.008

    Article  ADS  Google Scholar 

  • P. Jenniskens, P. Gural, A. Berdeu, CAMSS: a spectroscopic survey of meteoroid elemental abundances. Meteoroids 2013, 117–124 (2014)

    ADS  Google Scholar 

  • P. Jenniskens, Q. Nénon, J. Albers, P.S. Gural, B. Haberman, D. Holman, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, The established meteor showers as observed by CAMS. Icarus 266, 331–354 (2016a). https://doi.org/10.1016/j.icarus.2015.09.013

    Article  ADS  Google Scholar 

  • P. Jenniskens, Q. Nénon, P.S. Gural, J. Albers, B. Haberman, B. Johnson, D. Holman, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, CAMS confirmation of previously reported meteor showers. Icarus 266, 355–370 (2016b). https://doi.org/10.1016/j.icarus.2015.08.014

    Article  ADS  Google Scholar 

  • P. Jenniskens, Q. Nénon, P.S. Gural, J. Albers, B. Haberman, B. Johnson, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016c). https://doi.org/10.1016/j.icarus.2015.11.009

    Article  ADS  Google Scholar 

  • D. Jewitt, L. Chizmadia, R. Grimm, D. Prialnik, Water in the small bodies of the solar system, in Protostars and Planets V (2007), pp. 863–878

    Google Scholar 

  • J. Jones, Meteoroid engineering model—final report. Tech. rep., NASA/MSFC internal report SEE/CR-2004-400 (2004)

  • J. Jones, P. Brown, Sporadic meteor radiant distributions - Orbital survey results. Mon. Not. R. Astron. Soc. 265, 524 (1993). https://doi.org/10.1093/mnras/265.3.524

    Article  ADS  Google Scholar 

  • J. Jones, M. Campbell, S. Nikolova, Modelling of the sporadic meteoroid sources, in Meteoroids 2001 Conference, ed. by B. Warmbein. ESA Special Publication, vol. 495 (2001), pp. 575–580

    Google Scholar 

  • T.J. Jopek, P.M. Jenniskens, The working group on meteor showers nomenclature: a history, current status and a call for contributions, in Meteoroids: the Smallest Solar System Bodies, ed. by W.J. Cooke, D.E. Moser, B.F. Hardin, D. Janches (2011), pp. 7–13

    Google Scholar 

  • T.J. Jopek, Z. Kaňuchová, Current status of the IAU MDC Meteor Showers Database. Meteoroids 2013, 353–364 (2014)

    ADS  Google Scholar 

  • T.J. Jopek, R. Rudawska, P. Bartczak, Meteoroid stream searching: the use of the vectorial elements. Earth Moon Planets 102, 73–78 (2008). https://doi.org/10.1007/s11038-007-9197-8

    Article  ADS  Google Scholar 

  • A. Juhász, M. Horányi, Dynamics and distribution of nano-dust particles in the inner solar system. Geophys. Res. Lett. 40, 2500–2504 (2013). https://doi.org/10.1002/grl.50535

    Article  ADS  Google Scholar 

  • L.P. Keller, K.L. Thomas, D.S. McKay, An interplanetary dust particle with links to CI chondrites. Geochim. Cosmochim. Acta 56, 1409–1412 (1992). https://doi.org/10.1016/0016-7037(92)90072-Q

    Article  ADS  Google Scholar 

  • L.P. Keller, K.L. Thomas, D.S. McKay, Carbon in primitive interplanetary dust particles, in Analysis of Interplanetary Dust Particles, ed. by E. Zolensky, T.L. Wilson, F.J.M. Rietmeijer, G.J. Flynn. American Institute of Physics Conference Series, vol. 310, (1994), p. 159. https://doi.org/10.1063/1.46531

    Chapter  Google Scholar 

  • L.P. Keller, S. Messenger, G.J. Flynn, S. Clemett, S. Wirick, C. Jacobsen, The nature of molecular cloud material in interplanetary dust. Geochim. Cosmochim. Acta 68, 2577–2589 (2004). https://doi.org/10.1016/j.gca.2003.10.044

    Article  ADS  Google Scholar 

  • M.S. Kelley, C.E. Woodward, D.E. Harker, D.H. Wooden, R.D. Gehrz, H. Campins, M.S. Hanner, S.M. Lederer, D.J. Osip, J. Pittichová, E. Polomski, A Spitzer study of comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT). Astrophys. J. 651, 1256–1271 (2006). https://doi.org/10.1086/507701. astro-ph/0607416

    Article  ADS  Google Scholar 

  • M.S. Kelley, Y.R. Fernández, J. Licandro, C.M. Lisse, W.T. Reach, M.F. A’Hearn, J. Bauer, H. Campins, A. Fitzsimmons, O. Groussin, P.L. Lamy, S.C. Lowry, K.J. Meech, J. Pittichová, C. Snodgrass, I. Toth, H.A. Weaver, The persistent activity of Jupiter-family comets at 3–7 AU. Icarus 225, 475–494 (2013)

    ADS  Google Scholar 

  • P.J. Kellogg, K. Goetz, S.J. Monson, Dust impact signals on the wind spacecraft. J. Geophys. Res. Space Phys. 121, 966–991 (2016). https://doi.org/10.1002/2015JA021124

    Article  ADS  Google Scholar 

  • J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985). https://doi.org/10.1016/0016-7037(85)90141-3

    Article  ADS  Google Scholar 

  • D.J. Kessler, Meteoroid environment model-1970 [Interplanetary and planetary]. NASA SP-8038, NASA (1970)

  • J.B. Kikwaya, M. Campbell-Brown, P.G. Brown, Bulk density of small meteoroids. Astron. Astrophys. 530, A113 (2011). https://doi.org/10.1051/0004-6361/201116431

    Article  Google Scholar 

  • H. Kimura, Light-scattering properties of fractal aggregates: numerical calculations by a superposition technique and the discrete-dipole approximation. J. Quant. Spectrosc. Radiat. Transf. 70(4), 581–594 (2001)

    ADS  Google Scholar 

  • H. Kimura, I. Mann, Radiation pressure on porous micrometeoroids, in Meteroids, ed. by W.J. Baggaley, V. Porubcan (1999), p. 283. 1998

    Google Scholar 

  • H. Kimura, I. Mann, D.A. Biesecker, E.K. Jessberger, Dust grains in the comae and tails of sungrazing comets: modeling of their mineralogical and morphological properties. Icarus 159, 529–541 (2002a). https://doi.org/10.1006/icar.2002.6940

    Article  ADS  Google Scholar 

  • H. Kimura, H. Okamoto, T. Mukai, Radiation pressure and the Poynting-Robertson effect for fluffy dust particles. Icarus 157, 349–361 (2002b). https://doi.org/10.1006/icar.2002.6849

    Article  ADS  Google Scholar 

  • H. Kimura, L. Kolokolova, I. Mann, Optical properties of cometary dust-constraints from numerical studies on light scattering by aggregate particles. Astron. Astrophys. 407(1), L5–L8 (2003)

    ADS  Google Scholar 

  • H. Kimura, L. Kolokolova, I. Mann, Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astron. Astrophys. 449(3), 1243–1254 (2006)

    ADS  Google Scholar 

  • J. Kissel, F.R. Krueger, The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760 (1987). https://doi.org/10.1038/326755a0

    Article  ADS  Google Scholar 

  • W. Klöck, F.J. Stadermann, Mineralogical and chemical relationships of interplanetary dust particles micrometeorites and meteorites, in Analysis of Interplanetary Dust Particles, ed. by E. Zolensky, T.L. Wilson, F.J.M. Rietmeijer, G.J. Flynn. American Institute of Physics Conference Series, vol. 310 (1994), p. 51. https://doi.org/10.1063/1.46523

    Chapter  Google Scholar 

  • H. Kobayashi, J. Kimura, S. Yamamoto, S. Watanabe, T. Yamamoto, Ice sublimation of dust particles and their detection in the outer solar system. Earth Planets Space 62, 57–61 (2010)

    ADS  Google Scholar 

  • H. Kobayashi, H. Kimura, S.Watanabe, T. Yamamoto, S. Müller, Sublimation temperature of circumstellar dust particles and its importance for dust ring formation. Earth Planets Space 63, 1067 (2011)

    ADS  Google Scholar 

  • L. Kolokolova, H. Kimura, Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astron. Astrophys. 513, A40 (2010)

    ADS  MATH  Google Scholar 

  • L. Kolokolova, J. Hough, A.C. Levasseur-Regourd, Polarimetry of stars and planetary systems (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  • D. Koschny, E. Drolshagen, S. Drolshagen, J. Kretschmer, T. Ott, G. Drolshagen, B. Poppe, Flux densities of meteoroids derived from optical double-station observations. Planet. Space Sci. 143, 230–237 (2017). https://doi.org/10.1016/j.pss.2016.12.007

    Article  ADS  Google Scholar 

  • Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962). https://doi.org/10.1086/108790

    Article  ADS  MathSciNet  Google Scholar 

  • L. Kresak, Cometary dust trails and meteor storms. Astron. Astrophys. 279, 646–660 (1993)

    ADS  Google Scholar 

  • H. Krüger, E. Grün, D.P. Hamilton, M. Baguhl, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, R. Srama, H.A. Zook, Three years of Galileo dust data, II: 1993–1995. Planet. Space Sci. 47, 85–106 (1998). https://doi.org/10.1016/S0032-0633(98)00097-X. astro-ph/9809318

    Article  ADS  Google Scholar 

  • H. Krüger, N. Altobelli, B. Anweiler, S.F. Dermott, V. Dikarev, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, M. Landgraf, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, H.A. Zook, Five years of Ulysses dust data: 2000. Planet. Space Sci. 54, 932–956 (2006). https://doi.org/10.1016/j.pss.2006.04.015. 2004

    Article  ADS  Google Scholar 

  • H. Krüger, V. Dikarev, B. Anweiler, S.F. Dermott, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Three years of Ulysses dust data: 2005. Planet. Space Sci. 58, 951–964 (2010). https://doi.org/10.1016/j.pss.2009.11.002. to 2007. 0908.1279

    Article  ADS  Google Scholar 

  • M.J. Kuchner, C.C. Stark, Collisional grooming models of the Kuiper belt dust cloud. Astron. J. 140, 1007–1019 (2010)

    ADS  Google Scholar 

  • G. Kurat, C. Koeberl, T. Presper, F. Brandstätter, M. Maurette, Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta 58, 3879–3904 (1994). https://doi.org/10.1016/0016-7037(94)90369-7

    Article  ADS  Google Scholar 

  • G. Kurat, P. Hoppe, C. Engrand, A chondrule micrometeorite from antarctica with vapor-fractionated trace-element abundances. Meteorit. Planet. Sci. Suppl. 31, A75–A76 (1996)

    Google Scholar 

  • W.S. Kurth, T.F. Averkamp, D.A. Gurnett, Z. Wang, Cassini RPWS observations of dust in Saturn’s E ring. Planet. Space Sci. 54, 988–998 (2006). https://doi.org/10.1016/j.pss.2006.05.011

    Article  ADS  Google Scholar 

  • S. Kwon, S. Hong, J. Weinberg, An observational model of the zodiacal light brightness distribution. New Astron. 10(2), 91–107 (2004)

    ADS  Google Scholar 

  • H. Laakso, R. Grard, A. Pedersen, G. Schwehm, Impacts of large dust particles on the VEGA spacecraft. Adv. Space Res. 9, 269–272 (1989). https://doi.org/10.1016/0273-1177(89)90273-1

    Article  ADS  Google Scholar 

  • H. Lai, C.T. Russell, H. Wei, T. Zhang, The evolution of co-orbiting material in the orbit of 2201 Oljato from 1980 to 2012 as deduced from Pioneer Venus Orbiter and Venus Express magnetic records. Meteorit. Planet. Sci. 49, 28–35 (2014). https://doi.org/10.1111/maps.12102

    Article  ADS  Google Scholar 

  • M. Landgraf, Modellierung der dynamik und interpretation der in-situ-messung interstellaren staubs in der lokalen umgebung des sonnensystems. PhD thesis, Ruprecht-Karls-Universität Heidelberg (1998)

  • M. Landgraf, Modeling the motion and distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105, 10,303–10,316 (2000)

    ADS  Google Scholar 

  • M. Landgraf, J.C. Liou, H.A. Zook, E. Grün, Origins of solar system dust beyond Jupiter. Astron. J. 123, 2857–2861 (2002)

    ADS  Google Scholar 

  • J. Lasue, A.C. Levasseur-Regourd, N. Fray, H. Cottin, Inferring the interplanetary dust properties-from remote observations and simulations. Astron. Astrophys. 473(2), 641–649 (2007)

    ADS  Google Scholar 

  • J. Lasue, A. Levasseur-Regourd, A. Lazarian, Interplanetary dust, in Polarimetry of Stars and Planetary Systems, ed. by Kolokolova et al. (2015)

    Google Scholar 

  • D.S. Lauretta (OSIRIS-Rex Team), An overview of the OSIRIS-REx asteroid sample return mission, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43 (2012), p. 2491

    Google Scholar 

  • M.E. Lawler, D.E. Brownlee, CHON as a component of dust from comet Halley. Nature 359, 810–812 (1992). https://doi.org/10.1038/359810a0

    Article  ADS  Google Scholar 

  • A. Lazarian, B. Andersson, T. Hoang, Grain alignment: role of radiative torques and paramagnetic relaxation, in Polarimetry of Stars and Planetary Systems, ed. by Kolokolova et al. (2015)

    Google Scholar 

  • C. Leinert, Zodiacal light—a measure of the interplanetary environment. Space Sci. Rev. 18(3), 281–339 (1975)

    ADS  Google Scholar 

  • C. Leinert, E. Grün, Interplanetary dust, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 207–275

    Google Scholar 

  • C. Leinert, S. Roser, J. Buitrago, How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, 345–357 (1983a)

    ADS  MATH  Google Scholar 

  • C. Leinert, S. Roser, J. Buitrago, How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, 345–357 (1983b)

    ADS  MATH  Google Scholar 

  • C. Leinert, S. Bowyer, L. Haikala, M. Hanner, M. Hauser, A.C. Levasseur-Regourd, I. Mann, K. Mattila, W. Reach, W. Schlosser et al., The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127(1), 1–99 (1998)

    ADS  Google Scholar 

  • A.C. Levasseur, J. Blamont, Satellite observations of intensity variations of the zodiacal light. Nature 246(5427), 26–28 (1973)

    ADS  Google Scholar 

  • A. Levasseur-Regourd, J. Renard, R. Dumont, Dust optical properties: a comparison between cometary and interplanetary grains. Adv. Space Res. 11(12), 175–182 (1991)

    ADS  Google Scholar 

  • A. Levasseur-Regourd, M. Cabane, J. Worms, V. Haudebourg, Physical properties of dust in the solar system: relevance of a computational approach and of measurements under microgravity conditions. Adv. Space Res. 20(8), 1585–1594 (1997)

    ADS  Google Scholar 

  • A.C. Levasseur-Regourd, Optical and thermal properties of zodiacal dust, in IAU Colloq. 150: Physics, Chemistry, and Dynamics of Interplanetary Dust, vol. 104, ed. by B.A.S. Gustafson, M.S. Hanner (Astron. Soc. of the Pacific Press, San Francisco, 1996a), p. 301

    Google Scholar 

  • A.C. Levasseur-Regourd, Physical properties of dust grains deduced by optical probing techniques. Adv. Space Res. 17(12), 117–122 (1996b)

    ADS  Google Scholar 

  • A.C. Levasseur-Regourd, R. Dumont, Absolute photometry of zodiacal light. Astron. Astrophys. 84, 277–279 (1980)

    ADS  Google Scholar 

  • A.C. Levasseur-Regourd, E. Hadamcik, J. Renard, Evidence for two classes of comets from their polarimetric properties at large phase angles. Astron. Astrophys. 313, 327–333 (1996)

    ADS  Google Scholar 

  • A.C. Levasseur-Regourd, I. Mann, R. Dumont, M.S. Hanner, Optical and thermal properties of interplanetary dust, in Interplanetary Dust, ed. by E. Grün, B.A.S. Gustafson, S.F. Dermott, H. Fechtig (Springer, Berlin, 2001), pp. 57–94

    Google Scholar 

  • A.C. Levasseur-Regourd, T. Mukai, J. Lasue, Y. Okada, Physical properties of cometary and interplanetary dust. Planet. Space Sci. 55(9), 1010–1020 (2007)

    ADS  Google Scholar 

  • A.C. Levasseur-Regourd, J. Agarwal, H. Cottin, C. Engrand, G. Flynn, M. Fulle, T. Gombosi, Y. Langevin, J. Lasue, T. Mannel, S. Merounane, O. Poch, N. Thomas, A. Westphal, Cometary dust. Space Sci. Rev. 214, 64 (2018). https://doi.org/10.1007/s11214-018-0496-3

    Article  ADS  Google Scholar 

  • L.F. Lim, L.R. Nittler, Elemental composition of 433 eros: new calibration of the NEAR-Shoemaker XRS data. Icarus 200, 129–146 (2009). https://doi.org/10.1016/j.icarus.2008.09.018

    Article  ADS  Google Scholar 

  • J.C. Liou, H.A. Zook, Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus 128(2), 354–367 (1997)

    ADS  Google Scholar 

  • J.C. Liou, H.A. Zook, Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. Astron. J. 118, 580–590 (1999)

    ADS  Google Scholar 

  • J.C. Liou, H.A. Zook, S.F. Dermott, Kuiper belt dust grains as a source of interplanetary dust particles. Icarus 124, 429–440 (1996a). https://doi.org/10.1006/icar.1996.0220

    Article  ADS  Google Scholar 

  • S.G. Love, D.E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993). https://doi.org/10.1126/science.262.5133.550

    Article  ADS  Google Scholar 

  • K. Lumme, J. Rahola, J. Hovenier, Light scattering by dense clusters of spheres. Icarus 126(2), 455–469 (1997)

    ADS  Google Scholar 

  • D.M. Malaspina, L.B. Wilson, A database of interplanetary and interstellar dust detected by the Wind spacecraft. J. Geophys. Res. Space Phys. 121, 9369–9377 (2016). https://doi.org/10.1002/2016JA023209

    Article  ADS  Google Scholar 

  • D.M. Malaspina, M. Horányi, A. Zaslavsky, K. Goetz, L.B. Wilson, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014). https://doi.org/10.1002/2013GL058786

    Article  ADS  Google Scholar 

  • D.M. Malaspina, L.E. O’Brien, F. Thayer, Z. Sternovsky, A. Collette, Revisiting STEREO interplanetary and interstellar dust flux and mass estimates. J. Geophys. Res. Space Phys. 120, 6085–6100 (2015). https://doi.org/10.1002/2015JA021352

    Article  ADS  Google Scholar 

  • I. Mann, Interstellar grains in the solar system: requirements for an analysis. Space Sci. Rev. 78(1), 259–264 (1996)

    ADS  Google Scholar 

  • I. Mann, H. Okamoto, T. Mukai, H. Kimura, Y. Kitada, Fractal aggregate analogues for near solar dust properties. Astron. Astrophys. 291, 1011–1018 (1994)

    ADS  Google Scholar 

  • I. Mann, H. Kimura, D.A. Biesecker, B.T. Tsurutani, E. Grün, R.B. McKibben, J.C. Liou, R.M. MacQueen, T. Mukai, M. Guhathakurta et al., Dust near the sun. Space Sci. Rev. 110(3), 269–305 (2004)

    ADS  Google Scholar 

  • G. Matrajt, S. Taylor, G. Flynn, D. Brownlee, D. Joswiak, A nuclear microprobe study of the distribution and concentration of carbon and nitrogen in Murchison and Tagish lake meteorites, Antarctic micrometeorites, and IDPs: implications for astrobiology. Meteorit. Planet. Sci. 38, 1585–1600 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00003.x

    Article  ADS  Google Scholar 

  • G. Matrajt, S. Pizzarello, S. Taylor, D. Brownlee, Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteorit. Planet. Sci. 39, 1849–1858 (2004). https://doi.org/10.1111/j.1945-5100.2004.tb00080.x

    Article  ADS  Google Scholar 

  • M. Maurette, Cometary micrometeorites in planetology, exobiology, and early climatology, in Comets and the Origin and Evolution of Life, ed. by P.J. Thomas, R.D. Hicks, C.F. Chyba, C.P. McKay (2006), p. 69. https://doi.org/10.1007/3-540-33088-7_3

    Chapter  Google Scholar 

  • M. Maurette, C. Hammer, N. Reeh, D.E. Brownlee, H.H. Thomsen, Placers of cosmic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986). https://doi.org/10.1126/science.233.4766.869

    Article  ADS  Google Scholar 

  • M. Maurette, C. Jehanno, E. Robin, C. Hammer, Characteristics and mass distribution of extraterrestrial dust from the Greenland ice CAP. Nature 328, 699–702 (1987). https://doi.org/10.1038/328699a0

    Article  ADS  Google Scholar 

  • M. Maurette, C. Olinger, M.C. Michel-Levy, G. Kurat, M. Pourchet, F. Brandstatter, M. Bourot-Denise, A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44–47 (1991). https://doi.org/10.1038/351044a0

    Article  ADS  Google Scholar 

  • M. Maurette, C. Engrand, A. Brack, G. Kurat, S. Leach, M. Perreau, Carbonaceous phases in Antarctic micrometeorites and their mineralogical environment. Their contribution to the possible role of micrometeorites as “chondritic chemical reactors” in atmospheres, waters and/or ices, in Lunar and Planetary Science Conference, vol. 26 (1995)

    Google Scholar 

  • M. Maurette, J. Duprat, C. Engrand, M. Gounelle, G. Kurat, G. Matrajt, A. Toppani, Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth. Planet. Space Sci. 48, 1117–1137 (2000). https://doi.org/10.1016/S0032-0633(00)00086-6

    Article  ADS  Google Scholar 

  • N. McBride, S.F. Green, J.A.M. McDonnell, Meteoroids and small sized debris in low earth orbit and at 1 Au: results of recent modelling. Adv. Space Res. 23, 73–82 (1999). https://doi.org/10.1016/S0273-1177(98)00232-4

    Article  ADS  Google Scholar 

  • K.D. McKeegan, Ion microprobe measurements of H, C, O, Mg, and SI isotopic abundances in individual interplanetary dust particles. PhD thesis, Washington Univ., Seattle (1987a)

  • K.D. McKeegan, Oxygen isotopes in refractory stratospheric dust particles—proof of extraterrestial origin. Science 237, 1468–1471 (1987b). https://doi.org/10.1126/science.237.4821.1468

    Article  ADS  Google Scholar 

  • K.D. McKeegan, R.M. Walker, E. Zinner, Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta 49, 1971–1987 (1985). https://doi.org/10.1016/0016-7037(85)90091-2

    Article  ADS  Google Scholar 

  • H. McNamara, J. Jones, B. Kauffman, R. Suggs, W. Cooke, S. Smith, Meteoroid engineering model (MEM): a meteoroid model for the inner solar system. Earth Moon Planets 95, 123–139 (2004). https://doi.org/10.1007/s11038-005-9044-8

    Article  ADS  Google Scholar 

  • A. Meibom, B.E. Clark, Invited review: evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24 (1999)

    ADS  Google Scholar 

  • D.D. Meisel, D. Janches, J.D. Mathews, Extrasolar micrometeors radiating from the vicinity of the local interstellar bubble. Astrophys. J. 567, 323–341 (2002). https://doi.org/10.1086/322317

    Article  ADS  Google Scholar 

  • S. Messenger, Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000). https://doi.org/10.1038/35010053

    Article  ADS  Google Scholar 

  • S. Messenger, L.P. Keller, F.J. Stadermann, R.M. Walker, E. Zinner, Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300, 105–108 (2003). https://doi.org/10.1126/science.1080576

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, P. Couturier, S. Hoang, C. Perche, J.L. Steinberg, J. Fainberg, C. Meetre, Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner. Science 232, 370–374 (1986). https://doi.org/10.1126/science.232.4748.370

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, A. Lecacheux, M.L. Kaiser, D.A. Gurnett, Detecting nanoparticles at radio frequencies: jovian dust stream impacts on Cassini/RPWS. Geophys. Res. Lett. 36, L03103 (2009a). https://doi.org/10.1029/2008GL036752

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, M. Maksimovic, A. Czechowski, I. Mann, I. Zouganelis, K. Goetz, M.L. Kaiser, O.C. St Cyr, J.L. Bougeret, S.D. Bale, Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? Sol. Phys. 256, 463–474 (2009b). https://doi.org/10.1007/s11207-009-9349-2. arXiv:0903.4141

    Article  ADS  Google Scholar 

  • M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  • A.V. Moorhead, Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set. Mon. Not. R. Astron. Soc. 455, 4329–4338 (2016). https://doi.org/10.1093/mnras/stv2610

    Article  ADS  Google Scholar 

  • A.V. Moorhead, Deconvoluting measurement uncertainty from the meteor speed distribution. Meteorit. Planet. Sci. 1, 1–7 (2018). https://doi.org/10.1111/maps.13066

    Article  Google Scholar 

  • A.V. Moorhead, H.M. Koehler, W.J. Cooke, NASA meteoroid engineering model release 2.0. NASA/TM-2015-218214 (2015)

  • A.V. Moorhead, R.C. Blaauw, D.E. Moser, M.D. Campbell-Brown, P.G. Brown, W.J. Cooke, A two-population sporadic meteoroid bulk density distribution and its implications for environment models. Mon. Not. R. Astron. Soc. 472, 3833–3841 (2017a). https://doi.org/10.1093/mnras/stx2175

    Article  ADS  Google Scholar 

  • A.V. Moorhead, P.G. Brown, M.D. Campbell-Brown, D. Heynen, W.J. Cooke, Fully correcting the meteor speed distribution for radar observing biases. Planet. Space Sci. 143, 209–217 (2017). https://doi.org/10.1016/j.pss.2017.02.002

    Article  ADS  Google Scholar 

  • A. Moro-Martín, R. Malhotra, A study of the dynamics of dust from the Kuiper belt: spatial distribution and spectral energy distribution. Astron. J. 124, 2305–2321 (2002)

    ADS  Google Scholar 

  • A. Moro-Martín, R. Malhotra, Dynamical models of Kuiper belt dust in the inner and outer solar system. Astrophys. J. 125, 2255–2265 (2003)

    ADS  Google Scholar 

  • D.A. Morrison, U.S. Clanton, Properties of microcraters and cosmic dust of less than 1000 A dimensions, in Lunar and Planetary Science Conference Proceedings, vol. 10, ed. by N.W. Hinners (1979), pp. 1649–1663

    Google Scholar 

  • S. Mostefaoui, G.W. Lugmair, P. Hoppe, A. El Goresy, Evidence for live 60Fe in meteorites. New Astron. Rev. 48, 155–159 (2004). https://doi.org/10.1016/j.newar.2003.11.022

    Article  ADS  Google Scholar 

  • C.E. Moyano-Cambero, E. Pellicer, J.M. Trigo-Rodríguez, I.P. Williams, J. Blum, P. Michel, M. Küppers, M. Martínez-Jiménez, I. Lloro, J. Sort, Nanoindenting the Chelyabinsk meteorite to learn about impact deflection effects in asteroids. Astrophys. J. 835, 157 (2017). https://doi.org/10.3847/1538-4357/835/2/157. 1612.07131

    Article  ADS  Google Scholar 

  • T. Mukai, G. Schwehm, Interaction of grains with the solar energetic particles. Astron. Astrophys. 95, 373–382 (1981)

    ADS  Google Scholar 

  • T. Mukai, A.M. Nakamura, J. Blum, R.E. Johnson, O. Havnes, Physical Processes on Interplanetary Dust (2001), p. 445

    Google Scholar 

  • R. Musci, R.J. Weryk, P. Brown, M.D. Campbell-Brown, P.A. Wiegert, An optical survey for millimeter-sized interstellar meteoroids. Astrophys. J. 745, 161 (2012). https://doi.org/10.1088/0004-637X/745/2/161. 1110.5882

    Article  ADS  Google Scholar 

  • R. Nakamura, H. Okamoto, Optical properties of fluffy aggregates as analogue of interplanetary dust particles. Adv. Space Res. 23(7), 1209–1212 (1999)

    ADS  Google Scholar 

  • T. Nakamura, T. Noguchi, T. Yada, Y. Nakamuta, N. Takaoka, Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy. Geochim. Cosmochim. Acta 65, 4385–4397 (2001). https://doi.org/10.1016/S0016-7037(01)00722-0

    Article  ADS  Google Scholar 

  • T. Nakamura, T. Noguchi, Y. Ozono, T. Osawa, K. Nagao, Mineralogy of ultracarbonaceous large micrometeorites. Meteorit. Planet. Sci. Suppl. 40, 5046 (2005)

    ADS  Google Scholar 

  • T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, K. Uesugi, T. Nakano, Chondrulelike objects in short-period comet 81P/Wild 2. Science 321, 1664 (2008). https://doi.org/10.1126/science.1160995

    Article  ADS  Google Scholar 

  • T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Nakato, T. Ogami, H. Ishida, A. Tsuchiyama, T. Yada, K. Shirai, R. Okazaki, A. Fujimura, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, Mineralogy and major element abundance of the dust particles recovered from Muses-C Regio on the asteroid Itokawa, in Lunar and Planetary Science Conference, vol. 42 (2011a), p. 1766

    Google Scholar 

  • T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato, T. Ogami, H. Ishida, M. Uesugi, T. Yada, K. Shirai, A. Fujimura, R. Okazaki, S.A. Sandford, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011b). https://doi.org/10.1126/science.1207758

    Article  ADS  Google Scholar 

  • K. Nakamura-Messenger, S. Messenger, L.P. Keller, S.J. Clemett, M.E. Zolensky, Organic globules in the Tagish lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006). https://doi.org/10.1126/science.1132175

    Article  ADS  Google Scholar 

  • R.J. Naumann, The near-earth meteoroid environment. NASA technical note NASA TN D-3717 (1966)

  • L. Neslušan, M. Hajduková, Separation and confirmation of showers. Astron. Astrophys. 598, A40 (2017). https://doi.org/10.1051/0004-6361/201629659

    Article  ADS  Google Scholar 

  • D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010). https://doi.org/10.1088/0004-637X/713/2/816. arXiv:0909.4322

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Janches, D. Vokrouhlický, P. Pokorný, W.F. Bottke, P. Jenniskens, Dynamical model for the zodiacal cloud and sporadic meteors. Astrophys. J. 743(2), 129 (2011a)

    ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, P. Pokorný, D. Janches, Dynamics of dust particles released from Oort cloud comets and their contribution to radar meteors. Astrophys. J. 743, 37 (2011b). https://doi.org/10.1088/0004-637X/743/1/37. arXiv:1109.2981

    Article  ADS  Google Scholar 

  • F.M. Neubauer, K.H. Glassmeier, A.J. Coates, R. Goldstein, M.H. Acuna, Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments. Geophys. Res. Lett. 17, 1809–1812 (1990). https://doi.org/10.1029/GL017i011p01809

    Article  ADS  Google Scholar 

  • T. Noguchi, T. Nakamura, W. Nozaki, Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish lake and Sayama meteorites. Earth Planet. Sci. Lett. 202, 229–246 (2002). https://doi.org/10.1016/S0012-821X(02)00777-X

    Article  ADS  Google Scholar 

  • T. Noguchi, H. Yabuta, S. Itoh, N. Sakamoto, T. Mitsunari, A. Okubo, R. Okazaki, T. Nakamura, S. Tachibana, K. Terada, M. Ebihara, N. Imae, M. Kimura, H. Nagahara, Variation of mineralogy and organic material during the early stages of aqueous activity recorded in Antarctic micrometeorites. Geochim. Cosmochim. Acta 208, 119–144 (2017). https://doi.org/10.1016/j.gca.2017.03.034

    Article  ADS  Google Scholar 

  • K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices, II: H2O and D2O. Astrophys. J. 693, 1209–1218 (2009)

    ADS  Google Scholar 

  • R.C. Ogliore, A.J. Westphal, Z. Gainsforth, A.L. Butterworth, S.C. Fakra, M.A. Marcus, Nebular mixing constrained by the stardust samples. Meteorit. Planet. Sci. 44, 1675–1681 (2009). https://doi.org/10.1111/j.1945-5100.2009.tb01198.x

    Article  ADS  Google Scholar 

  • B.M. Pedersen, N. Meyer-Vernet, M.G. Aubier, P. Zarka, Dust distribution around Neptune—grain impacts near the ring plane measured by the Voyager planetary radio astronomy experiment. J. Geophys. Res. Space Phys. 96, 19 (1991). https://doi.org/10.1029/91JA01601

    Article  Google Scholar 

  • S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, The organic content of the Tagish lake meteorite. Science 293, 2236–2239 (2001). https://doi.org/10.1126/science.1062614

    Article  ADS  Google Scholar 

  • J.M.C. Plane, Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 41, 6507–6518 (2012). https://doi.org/10.1039/c2cs35132c

    Article  ADS  Google Scholar 

  • J.M.C. Plane, W. Feng, E. Dawkins, M.P. Chipperfield, J. Höffner, D. Janches, D.R. Marsh, Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere. Geophys. Res. Lett. 41, 4753–4760 (2014). https://doi.org/10.1002/2014GL060334

    Article  ADS  Google Scholar 

  • J.M.C. Plane, G.J. Flynn, A. Maattanen, J.E. Moores, A.R. Poppe, J.D. Carrillo-Sanchez, C. Listowski, Impacts of cosmic dust on planetary atmospheres and surfaces. Space. Sci. Rev. 214, 23 (2018)

    ADS  Google Scholar 

  • P. Pokorný, P.G. Brown, A reproducible method to determine the meteoroid mass index. Astron. Astrophys. 592, A150 (2016). https://doi.org/10.1051/0004-6361/201628134. arXiv:1605.04437

    Article  ADS  Google Scholar 

  • P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Dynamical model for the toroidal sporadic meteors. Astrophys. J. 789, 25 (2014). https://doi.org/10.1088/0004-637X/789/1/25

    Article  ADS  Google Scholar 

  • P. Pokorný, D. Janches, P.G. Brown, J.L. Hormaechea, An orbital meteoroid stream survey using the Southern Argentina Agile MEteor Radar (SAAMER) based on a wavelet approach. Icarus 290, 162–182 (2017). https://doi.org/10.1016/j.icarus.2017.02.025

    Article  ADS  Google Scholar 

  • A.R. Poppe, Interplanetary dust influx to the Pluto-Charon system. Icarus 246, 352–359 (2015)

    ADS  Google Scholar 

  • A.R. Poppe, An improved model for interplanetary dust fluxes in the outer solar system. Icarus 264, 369–386 (2016). https://doi.org/10.1016/j.icarus.2015.10.001

    Article  ADS  Google Scholar 

  • A. Poppe, B. Jacobsmeyer, D. James, M. Horányi, Simulation of polyvinylidene fluoride detector response to hypervelocity particle impact. Nucl. Instrum. Methods 622(3), 583–587 (2010a)

    ADS  Google Scholar 

  • A. Poppe, D. James, B. Jacobsmeyer, M. Horányi, First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophys. Res. Lett. 37, L11101 (2010b)

    ADS  Google Scholar 

  • A. Poppe, D. James, M. Horányi, Measurements of the terrestrial dust influx variability by the cosmic dust experiment. Planet. Space Sci. 59, 319–326 (2011)

    ADS  Google Scholar 

  • W.T. Reach, P. Morris, F. Boulanger, K. Okumura, The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus 164(2), 384–403 (2003)

    ADS  Google Scholar 

  • W.T. Reach, M.S. Kelley, M.V. Sykes, A survey of debris trails from short-period comets. Icarus 191(1), 298–322 (2007)

    ADS  Google Scholar 

  • L. Remusat, Y. Guan, Y. Wang, J.M. Eiler, Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early solar system nebula. Astron. Astrophys. 713, 1048–1058 (2010). https://doi.org/10.1088/0004-637X/713/2/1048

    Article  ADS  Google Scholar 

  • J. Renard, A. Levasseur-Regourd, R. Dumont, Properties of interplanetary dust from infrared and optical observations, II: brightness, polarization, temperature, albedo and their dependence on the elevation above the ecliptic. Astron. Astrophys. 304, 602 (1995)

    ADS  Google Scholar 

  • H.P. Robertson, Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423 (1937). https://doi.org/10.1093/mnras/97.6.423

    Article  ADS  MATH  Google Scholar 

  • P. Rochette, L. Folco, C. Suavet, M. van Ginneken, J. Gattacceca, N. Perchiazzi, R. Braucher, R.P. Harvey, Micrometeorites from the transantarctic mountains. Proc. Natl. Acad. Sci. 105, 18,206–18,211 (2008). https://doi.org/10.1073/pnas.0806049105

    Article  Google Scholar 

  • L. Rotelli, J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, E. Carota, L. Botta, E. di Mauro, R. Saladino, The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Nat. Sci. Rep. 6, 38888 (2016). https://doi.org/10.1038/srep38888

    Article  ADS  Google Scholar 

  • M. Rowan-Robinson, B. May, An improved model for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust. Mon. Not. R. Astron. Soc. 429, 2894 (2013)

    ADS  Google Scholar 

  • A.E. Rubin, J.M. Trigo-Rodríguez, H. Huber, J.T. Wasson, Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007). https://doi.org/10.1016/j.gca.2007.02.008

    Article  ADS  Google Scholar 

  • D.P. Rubincam, Asteroid orbit evolution due to thermal drag. J. Geophys. Res. 100, 1585–1594 (1995). https://doi.org/10.1029/94JE02411

    Article  ADS  Google Scholar 

  • R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš, Independent identification of meteor showers in EDMOND database. Planet. Space Sci. 118, 38–47 (2015). https://doi.org/10.1016/j.pss.2015.07.011. arXiv:1406.6598

    Article  ADS  Google Scholar 

  • R. Rudawska, J. Tóth, D. Kalmančok, P. Zigo, P. Matlovič, Meteor spectra from AMOS video system. Planet. Space Sci. 123, 25–32 (2016). https://doi.org/10.1016/j.pss.2015.11.018

    Article  ADS  Google Scholar 

  • S.S. Russell, G.R. Huss, A.J. Fahey, R.C. Greenwood, R. Hutchison, G.J. Wasserburg, An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta 62, 689–714 (1998). https://doi.org/10.1016/S0016-7037(97)00374-8

    Article  ADS  Google Scholar 

  • G.O. Ryabova, Modeling of meteoroid streams: the velocity of ejection of meteoroids from comets (a review). Sol. Syst. Res. 47, 219–238 (2013). https://doi.org/10.1134/S0038094613030052

    Article  ADS  Google Scholar 

  • L.S. Schramm, D.E. Brownlee, M.M. Wheelock, Major element composition of stratospheric micrometeorites. Meteoritics 24, 99–112 (1989)

    ADS  Google Scholar 

  • E.R.D. Scott, R.H. Jones, Disentangling nebular and asteroidal features of CO3 carbonaceous chondrite meteorites. Geochim. Cosmochim. Acta 54, 2485–2502 (1990). https://doi.org/10.1016/0016-7037(90)90235-D

    Article  ADS  Google Scholar 

  • E.R.D. Scott, A.N. Krot, Chondrites and their components. Treatise Geochem. 1, 711 (2003). https://doi.org/10.1016/B0-08-043751-6/01145-2

    Article  Google Scholar 

  • Z. Sekanina, Activity of comet Hale-Bopp (1995 O1) beyond 6 AU from the Sun. Astron. Astrophys. 314, 957–965 (1996)

    ADS  Google Scholar 

  • A. Sekhar, D.J. Asher, Resonant behavior of comet Halley and the Orionid stream. Meteorit. Planet. Sci. 49, 52–62 (2014). https://doi.org/10.1111/maps.12117. arXiv:1303.2928

    Article  ADS  Google Scholar 

  • A. Shu, S. Bugiel, E. Grün, J. Hillier, M. Horányi, T. Munsat, R. Srama, Cratering studies in polyvinylidene fluoride (PVDF) thin films. Planet. Space Sci. 89, 29–35 (2013)

    ADS  Google Scholar 

  • F.H. Shu, H. Shang, A.E. Glassgold, T. Lee, X-rays and fluctuating X-winds from protostars. Science 277, 1475–1479 (1997). https://doi.org/10.1126/science.277.5331.1475

    Article  ADS  Google Scholar 

  • J.I. Simon, I.D. Hutcheon, S.B. Simon, J.E.P. Matzel, E.C. Ramon, P.K. Weber, L. Grossman, D.J. DePaolo, Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula. Science 331, 1175 (2011). https://doi.org/10.1126/science.1197970

    Article  ADS  Google Scholar 

  • J.A. Simpson, A.J. Tuzzolino, Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instrum. Methods Phys. Res., Sect. A 236, 187–202 (1985)

    ADS  Google Scholar 

  • J.A. Simpson, A.J. Tuzzolino, Cosmic dust investigations, II: instruments for measurement of particle trajectory, velocity and mass. Nucl. Instrum. Methods Phys. Res., Sect. A 279, 625–639 (1989)

    ADS  Google Scholar 

  • J.A. Simpson, D. Rabinowitz, A.J. Tuzzolino, Cosmic dust investigations, I: PVDF detector signal dependence on mass and velocity for penetrating particles. Nucl. Instrum. Methods Phys. Res., Sect. A 279, 611–624 (1989)

    ADS  Google Scholar 

  • R.B. Southworth, G.S. Hawkins, Statistics of meteor streams. Smithson. Contrib. Astrophys. 7, 261 (1963)

    ADS  Google Scholar 

  • R. Srama et al., The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004)

    ADS  Google Scholar 

  • O.C. St Cyr, M.L. Kaiser, N. Meyer-Vernet, R.A. Howard, R.A. Harrison, S.D. Bale, W.T. Thompson, K. Goetz, M. Maksimovic, J. Bougeret, D. Wang, S. Crothers, STEREO SECCHI and S/WAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts. Sol. Phys. 256, 475–488 (2009). https://doi.org/10.1007/s11207-009-9362-5

    Article  ADS  Google Scholar 

  • C.C. Stark, M.J. Kuchner, A new algorithm for self-consistent three-dimensional modeling of collisions in dust debris disks. Astrophys. J. 707, 543–553 (2009)

    ADS  Google Scholar 

  • P. Staubach, E. Grün, R. Jehn, The meteoroid environment near earth. Adv. Space Res. 19, 301–308 (1997). https://doi.org/10.1016/S0273-1177(97)00017-3

    Article  ADS  Google Scholar 

  • J. Staude, T. Schmidt, Circular polarisation measurements of the zodiacal light. Astron. Astrophys. 20, 163 (1972)

    ADS  Google Scholar 

  • D.I. Steel, W.G. Elford, Collisions in the solar system, III: meteoroid survival times. Mon. Not. R. Astron. Soc. 218, 185–199 (1986). https://doi.org/10.1093/mnras/218.2.185

    Article  ADS  Google Scholar 

  • S.A. Stern, Collisional time scales in the Kuiper disk and their implications. Astron. J. 110, 2 (1995)

    Google Scholar 

  • S.A. Stern, Signatures of collisions in the Kuiper disk. Astron. Astrophys. 310, 999–1010 (1996)

    ADS  Google Scholar 

  • S.A. Stern, The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. 140, 3–21 (2008)

    ADS  Google Scholar 

  • E. Stokan, M.D. Campbell-Brown, A particle-based model for ablation and wake formation in faint meteors. Mon. Not. R. Astron. Soc. 447, 1580–1597 (2015). https://doi.org/10.1093/mnras/stu2552

    Article  ADS  Google Scholar 

  • P. Strub, H. Krüger, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system, II: fluctuations in the dust flow from the data. Astrophys. J. 812, 140 (2015). https://doi.org/10.1088/0004-637X/812/2/140. arXiv:1508.03242

    Article  ADS  Google Scholar 

  • C. Suavet, A. Alexandre, I.A. Franchi, J. Gattacceca, C. Sonzogni, R.C. Greenwood, L. Folco, P. Rochette, Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios. Earth Planet. Sci. Lett. 293, 313–320 (2010). https://doi.org/10.1016/j.epsl.2010.02.046

    Article  ADS  Google Scholar 

  • D. Subasinghe, M.D. Campbell-Brown, E. Stokan, Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies. Mon. Not. R. Astron. Soc. 457, 1289–1298 (2016). https://doi.org/10.1093/mnras/stw019

    Article  ADS  Google Scholar 

  • R.M. Suggs, D.E. Moser, W.J. Cooke, R.J. Suggs, The flux of kilogram-sized meteoroids from lunar impact monitoring. Icarus 238, 23 (2014)

    ADS  Google Scholar 

  • J.R. Szalay, M. Horányi, Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophys. Res. Lett. 42, 10 (2015). https://doi.org/10.1002/2015GL066908

    Article  Google Scholar 

  • J.R. Szalay, M. Piquette, M. Horányi, The student dust counter: status report at 23 AU. Earth Planets Space 65, 1145–1149 (2013)

    ADS  Google Scholar 

  • A.D. Taylor, W.J. Baggaley, D.I. Steel, Discovery of interstellar dust entering the Earth’s atmosphere. Nature 380, 323–325 (1996). https://doi.org/10.1038/380323a0

    Article  ADS  Google Scholar 

  • S. Taylor, J.H. Lever, R.P. Harvey, Accretion rate of cosmic spherules measured at the South pole. Nature 392, 899–903 (1998). https://doi.org/10.1038/31894

    Article  ADS  Google Scholar 

  • S. Taylor, J.H. Lever, R.P. Harvey, Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteorit. Planet. Sci. 35, 651–666 (2000). https://doi.org/10.1111/j.1945-5100.2000.tb01450.x

    Article  ADS  Google Scholar 

  • E. Thomas, M. Horányi, D. Janches, T. Munsat, J. Simolka, Z. Sternovsky, Measurements of the ionization coefficient of simulated iron micrometeoroids. Geophys. Res. Lett. 43, 3645–3652 (2016). https://doi.org/10.1002/2016GL068854

    Article  ADS  Google Scholar 

  • K.L. Thomas, G.E. Blanford, L.P. Keller, W. Klock, D.S. McKay, Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1566 (1993). https://doi.org/10.1016/0016-7037(93)90012-L

    Article  ADS  Google Scholar 

  • J.I. Thorpe, C. Parvini, J.M. Trigo-Rodríguez, Detection and measurement of micrometeoroids with LISA Pathfinder. Astron. Astrophys. 586, A107 (2016). https://doi.org/10.1051/0004-6361/201527658

    Article  ADS  Google Scholar 

  • F. Topputo, D.A. Dei Tos, A. Cipriano, Orbit design of LUMIO, a lunar meteoroid impact observer, in 42nd COSPAR Scientific Assembly, COSPAR Meeting, vol. 42 (2018), pp. 1–28

    Google Scholar 

  • M. Trieloff, E.K. Jessberger, I. Herrwerth, J. Hopp, C. Fiéni, M. Ghélis, M. Bourot-Denise, P. Pellas, Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422, 502–506 (2003). https://doi.org/10.1038/nature01499

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodríguez, Aqueous alteration in chondritic asteroids and comets from the study of carbonaceous chondrites, in European Mineralogical Union Notes in Mineralogy, vol. 15 (2015), pp. 67–87

    Google Scholar 

  • J.M. Trigo-Rodríguez, J. Blum, The role of collisional compaction in primitive asteroids and comets, in European Planetary Science Congress (2008), p. 29

    Google Scholar 

  • J.M. Trigo-Rodriguez, J. Blum, Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planet. Space Sci. 57, 243–249 (2009). https://doi.org/10.1016/j.pss.2008.02.011

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodriguez, J. Llorca, J. Borovicka, J. Fabregat, Chemical abundances determined from meteor spectra, I: ratios of the main chemical elements. Meteorit. Planet. Sci. 38, 1283–1294 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00313.x

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodríguez, J. Llorca, J. Fabregat, Chemical abundances determined from meteor spectra, II: evidence for enlarged sodium abundances in meteoroids. Mon. Not. R. Astron. Soc. 348, 802–810 (2004). https://doi.org/10.1111/j.1365-2966.2004.07389.x

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, J. Llorca, S. Fornasier, M.A. Barucci, I. Belskaya, Z. Martins, A.S. Rivkin, E. Dotto, J.M. Madiedo, A.A. Jacinto, UV to far-IR reflectance spectra of carbonaceous chondrites, I: implications for remote characterization of dark primitive asteroids targeted by sample-return missions. Mon. Not. R. Astron. Soc. 437, 227–240 (2014). https://doi.org/10.1093/mnras/stt1873. arXiv:1310.1742

    Article  ADS  Google Scholar 

  • J.M. Trigo-Rodríguez, R. Saladino, E. Di Mauro, L. Rotelli, C.E. Moyano-Cambero, E. Carota, L. Botta, The catalytic role of chondritic meteorites in the prebiotic enrichment of earth and other planetary-rich surfaces, under high meteoritic flux, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 48 (2017), p. 1161

    Google Scholar 

  • D. Tsintikidis, D.A. Gurnett, W.S. Kurth, L.J. Granroth, Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophys. Res. Lett. 23, 997–1000 (1996). https://doi.org/10.1029/96GL00961

    Article  ADS  Google Scholar 

  • Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa 2 asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013). https://doi.org/10.1016/j.actaastro.2013.06.028

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, D.R. Clay, L.D. Zhang, B. Dasgupta, D. Brinza, M. Henry, A. Mendis, S. Moses, K.H. Glassmeier, G. Musmann, I. Richter, Dust impacts at comet P/Borrelly. Geophys. Res. Lett. 30(22), 2134 (2003). https://doi.org/10.1029/2003GL017580

    Article  ADS  Google Scholar 

  • A.J. Tuzzolino, Two-dimensional position-sensing PVDF dust detectors for measurements of dust particle trajectory, velocity and mass. Nucl. Instrum. Methods Phys. Res., Sect. A 301 (1991)

    ADS  Google Scholar 

  • A.J. Tuzzolino, PVDF copolymer dust detectors: particle response and penetration characteristics. Nucl. Instrum. Methods Phys. Res., Sect. A 316, 223–237 (1992)

    ADS  Google Scholar 

  • A.J. Tuzzolino, T.E. Economou, R.B. McKibben, J.A. Simpson, J.A.M. McDonnell, M.J. Burchell, B.A.M. Vaughan, P. Tsou, M.S. Hanner, B.C. Clark, D.E. Brownlee, Dust flux monitor instrument for the stardust mission to comet Wild 2. J. Geophys. Res. 108, E10 (2003)

    Google Scholar 

  • A.J. Tuzzolino, T.E. Economou, B.C. Clark, P. Tsou, D.E. Brownlee, S.F. Green, J.A.M. McDonnell, N. McBride, M.T.S.H. Colwell, Dust measurements in the coma of comet 81P/Wild 2 by the dust flux monitor instrument. Science 304, 1776–1780 (2004). https://doi.org/10.1126/science.1098759

    Article  ADS  Google Scholar 

  • A.J. Tuzzolino et al., The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft, I: instrument description. Planet. Space Sci. 49, 689–703 (2001a)

    ADS  Google Scholar 

  • A.J. Tuzzolino et al., The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft, II: results form the first 16 months of flight. Planet. Space Sci. 49, 705–729 (2001b)

    ADS  Google Scholar 

  • A.J. Tuzzolino et al., Dust measurements in the coma of comet 81P/Wild 2 by the dust flux monitor instrument. Science 304, 1776–1780 (2004)

    ADS  Google Scholar 

  • G.B. Valsecchi, T.J. Jopek, C. Froeschle, Meteoroid stream identification: a new approach, I: theory. Mon. Not. R. Astron. Soc. 304, 743–750 (1999). https://doi.org/10.1046/j.1365-8711.1999.02264.x

    Article  ADS  Google Scholar 

  • M. van Ginneken, J. Gattacceca, P. Rochette, C. Sonzogni, A. Alexandre, V. Vidal, M.J. Genge, The parent body controls on cosmic spherule texture: evidence from the oxygen isotopic compositions of large micrometeorites. Geochim. Cosmochim. Acta 212, 196–210 (2017). https://doi.org/10.1016/j.gca.2017.05.008

    Article  ADS  Google Scholar 

  • J. Vaubaillon, F. Colas, Demonstration of gaps due to Jupiter in meteoroid streams. What happened with the 2003 Pi-Puppids? Astron. Astrophys. 431, 1139–1144 (2005). https://doi.org/10.1051/0004-6361:20041391

    Article  ADS  Google Scholar 

  • J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers, I: description of the model. Astron. Astrophys. 439, 751–760 (2005). https://doi.org/10.1051/0004-6361:20041544

    Article  ADS  Google Scholar 

  • J. Vaubaillon, P. Lamy, L. Jorda, On the mechanisms leading to orphan meteoroid streams. Mon. Not. R. Astron. Soc. 370, 1841–1848 (2006). https://doi.org/10.1111/j.1365-2966.2006.10606.x

    Article  ADS  Google Scholar 

  • P. Vernazza, M. Marsset, P. Beck, R.P. Binzel, M. Birlan, R. Brunetto, F.E. Demeo, Z. Djouadi, C. Dumas, S. Merouane, O. Mousis, B. Zanda, Interplanetary dust particles as samples of icy asteroids. Astrophys. J. 806, 204 (2015). https://doi.org/10.1088/0004-637X/806/2/204

    Article  ADS  Google Scholar 

  • D. Vinković, Radiation-pressure mixing of large dust grains in protoplanetary disks. Nature 459, 227 (2009)

    ADS  Google Scholar 

  • C. Vitense, A.V. Krivov, H. Kobayashi, T. Löhne, An improved model of the Edgeworth-Kuiper debris disk. Astron. Astrophys. 540, A30 (2012). https://doi.org/10.1051/0004-6361/201118551. arXiv:1202.2257

    Article  ADS  MATH  Google Scholar 

  • C. Vitense, A.V. Krivov, T. Löhne, Will New Horizons see dust clumps in the Edgeworth-Kuiper belt? Astron. J. 147 (2014)

    ADS  Google Scholar 

  • V. Vojáček, J. Borovička, P. Koten, P. Spurný, R. Štork, Catalogue of representative meteor spectra. Astron. Astrophys. 580, A67 (2015). https://doi.org/10.1051/0004-6361/201425047

    Article  ADS  Google Scholar 

  • D. Vokrouhlický, P. Farinella, Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 407, 606–608 (2000). https://doi.org/10.1038/35036528

    Article  ADS  Google Scholar 

  • J. Walter, F. Brandstaetter, G. Kurat, C. Koeberl, M. Maurette, Cosmic spherules, micrometeorites, and chondrules, in Lunar and Planetary Science Conference, vol. 26 (1995)

    Google Scholar 

  • A. Wehry, I. Mann, Identification of beta -meteoroids from measurements of the dust detector onboard the ULYSSES spacecraft. Astron. Astrophys. 341, 296–303 (1999)

    ADS  Google Scholar 

  • A. Wehry, H. Krüger, E. Grün, Analysis of Ulysses data: Radiation pressure effects on dust particles. Astron. Astrophys. 419, 1169–1174 (2004). https://doi.org/10.1051/0004-6361:20035613

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, A.A. Jackson, Orbital resonances and Poynting-Robertson drag. Icarus 104, 244–254 (1993). https://doi.org/10.1006/icar.1993.1099

    Article  ADS  Google Scholar 

  • J. Weinberg, J. Sparrow, Zodiacal Light as an Indicator of Interplanetary Dust (Wiley, Chichester, 1978), pp. 75–122

    Google Scholar 

  • M.K. Weisberg, T.J. McCoy, A.N. Krot, Systematics and Evaluation of Meteorite Classification (2006), pp. 19–52

    Google Scholar 

  • A.A. Weiss, J.W. Smith, A southern hemisphere survey of the radiants of sporadic meteors. Mon. Not. R. Astron. Soc. 121, 5 (1960). https://doi.org/10.1093/mnras/121.1.5

    Article  ADS  Google Scholar 

  • R.J. Weryk, P. Brown, A search for interstellar meteoroids using the Canadian Meteor Orbit Radar (CMOR). Earth Moon Planets 95, 221–227 (2004). https://doi.org/10.1007/s11038-005-9034-x

    Article  ADS  Google Scholar 

  • R.J. Weryk, P.G. Brown, Simultaneous radar and video meteors, II: photometry and ionisation. Planet. Space Sci. 81, 32–47 (2013). https://doi.org/10.1016/j.pss.2013.03.012

    Article  ADS  Google Scholar 

  • M.S. Westley, R.A. Baragiola, R.E. Johnson, G.A. Baratta, Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature 373, 405–407 (1995)

    ADS  Google Scholar 

  • A.J. Westphal, S.C. Fakra, Z. Gainsforth, M.A. Marcus, R.C. Ogliore, A.L. Butterworth, Mixing fraction of inner solar system material in comet 81P/Wild2. Astrophys. J. 694, 18–28 (2009). https://doi.org/10.1088/0004-637X/694/1/18

    Article  ADS  Google Scholar 

  • A.J. Westphal, R.M. Stroud, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G.J. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, L.R. Nittler, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, Evidence for interstellar origin of seven dust particles collected by the stardust spacecraft. Science 345(6198), 786–791 (2014). https://doi.org/10.1126/science.1252496.

    Article  ADS  Google Scholar 

  • F.L. Whipple, The theory of micro-meteorites, part I: in an isothermal atmosphere. Proc. Natl. Acad. Sci. 36, 687–695 (1950). https://doi.org/10.1073/pnas.36.12.687

    Article  ADS  Google Scholar 

  • F.L. Whipple, A comet model, III: the zodiacal light. Astrophys. J. 121, 750 (1955)

    ADS  Google Scholar 

  • F.L. Whipple, On maintaining the meteoritic complex. SAO Spec. Rep. 239, 1 (1967)

    ADS  Google Scholar 

  • P. Wiegert, J. Vaubaillon, M. Campbell-Brown, A dynamical model of the sporadic meteoroid complex. Icarus 201, 295–310 (2009). https://doi.org/10.1016/j.icarus.2008.12.030

    Article  ADS  Google Scholar 

  • P.A. Wiegert, Hyperbolic meteors: interstellar or generated locally via the gravitational slingshot effect? Icarus 242, 112–121 (2014). https://doi.org/10.1016/j.icarus.2014.06.031. 1404.2159

    Article  ADS  Google Scholar 

  • M.J. Willis, M.J. Burchell, T.J. Ahrens, H. Krüger, E. Grün, Decreased values of cosmic dust number density estimates in the solar system. Icarus 176, 440–452 (2005). https://doi.org/10.1016/j.icarus.2005.02.018

    Article  ADS  Google Scholar 

  • R.D. Wolstencroft, J.C. Kemp, Circular polarization of the nightsky radiation. Astrophys. J. 177, L137 (1972)

    ADS  Google Scholar 

  • D.H. Wooden, H.M. Butner, D.E. Harker, C.E. Woodward, Mg-rich silicate crystals in comet Hale-Bopp: ISM relics or solar nebula condensates? Icarus 143, 126–137 (2000). https://doi.org/10.1006/icar.1999.6240

    Article  ADS  Google Scholar 

  • P.J. Wozniakiewicz, Grain sorting in cometary dust from the outer solar nebula. Astrophys. J. Lett. 760, L23 (2012). https://doi.org/10.1088/2041-8205/760/2/L23

    Article  ADS  Google Scholar 

  • M.C. Wyatt, The insignificance of P-R drag in detectable extrasolar planetesimal belts. Astron. Astrophys. 433, 1007–1012 (2005). https://doi.org/10.1051/0004-6361:20042073. astro-ph/0501038

    Article  ADS  Google Scholar 

  • S.P. Wyatt, F.L. Whipple, The Poynting-Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950). https://doi.org/10.1086/145244

    Article  ADS  Google Scholar 

  • E.M. Xilouris, A.Z. Bonanos, I. Bellas-Velidis, P. Boumis, A. Dapergolas, A. Maroussis, A. Liakos, I. Alikakos, V. Charmandaris, G. Dimou, A. Fytsilis, M. Kelley, D. Koschny, V. Navarro, K. Tsiganis, K. Tsinganos, NELIOTA: the wide-field, high-cadence, lunar monitoring system at the prime focus of the Kryoneri telescope. Astron. Astrophys. 619, A141 (2018). https://doi.org/10.1051/0004-6361/201833499. arXiv:1809.00495

    Article  ADS  Google Scholar 

  • T. Yada, H. Kojima, The collection of micrometeorites in the Yamato meteorite ice field of Antarctica in 1998. Antarct. Meteor. Res. 13, 9 (2000)

    ADS  Google Scholar 

  • S. Yamamoto, T. Mukai, Dust production by impacts of interstellar dust on Edgeworth-Kuiper belt objects. Astron. Astrophys. 329, 785–791 (1998)

    ADS  Google Scholar 

  • H. Yang, M. Ishiguro, Origin of interplanetary dust through optical properties of zodiacal light. Astrophys. J. 813(2), 87 (2015)

    ADS  Google Scholar 

  • Q.Z. Ye, M.T. Hui, P.G. Brown, M.D. Campbell-Brown, P. Pokorný, P.A. Wiegert, X. Gao, When comets get old: a synthesis of comet and meteor observations of the low activity comet 209P/LINEAR. Icarus 264, 48–61 (2016). https://doi.org/10.1016/j.icarus.2015.09.003. arXiv:1509.00560

    Article  ADS  Google Scholar 

  • A. Zaslavsky, N. Meyer-Vernet, I. Mann, A. Czechowski, K. Issautier, G. Le Chat, F. Pantellini, K. Goetz, M. Maksimovic, S.D. Bale, J.C. Kasper, Interplanetary dust detection by radio antennas: mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res. Space Phys. 117(A16), A05102 (2012). https://doi.org/10.1029/2011JA017480

    Article  ADS  Google Scholar 

  • K. Zhang, G.A. Blake, E.A. Bergin, Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015). https://doi.org/10.1088/2041-8205/806/1/L7. 1505.00882

    Article  ADS  Google Scholar 

  • E. Zinner, K.D. McKeegan, R.M. Walker, Laboratory measurements of D/H ratios in interplanetary dust. Nature 305, 119–121 (1983). https://doi.org/10.1038/305119a0

    Article  ADS  Google Scholar 

  • E.K. Zinner, Presolar grains. Treatise Geochem. 1, 711 (2003). https://doi.org/10.1016/B0-08-043751-6/01144-0

    Article  Google Scholar 

  • M.E. Zolensky, Refractory interplanetary dust particles. Science 237, 1466–1468 (1987). https://doi.org/10.1126/science.237.4821.1466

    Article  ADS  Google Scholar 

  • M.E. Zolensky, T.J. Zega, H. Yano, S. Wirick, A.J. Westphal, M.K. Weisberg, I. Weber, J.L. Warren, M.A. Velbel, A. Tsuchiyama, P. Tsou, A. Toppani, N. Tomioka, K. Tomeoka, N. Teslich, M. Taheri, J. Susini, R. Stroud, T. Stephan, F.J. Stadermann, C.J. Snead, S.B. Simon, A. Simionovici, T.H. See, F. Robert, F.J.M. Rietmeijer, W. Rao, M.C. Perronnet, D.A. Papanastassiou, K. Okudaira, K. Ohsumi, I. Ohnishi, K. Nakamura-Messenger, T. Nakamura, S. Mostefaoui, T. Mikouchi, A. Meibom, G. Matrajt, M.A. Marcus, H. Leroux, L. Lemelle, L. Le, A. Lanzirotti, F. Langenhorst, A.N. Krot, L.P. Keller, A.T. Kearsley, D. Joswiak, D. Jacob, H. Ishii, R. Harvey, K. Hagiya, L. Grossman, J.N. Grossman, G.A. Graham, M. Gounelle, P. Gillet, M.J. Genge, G. Flynn, T. Ferroir, S. Fallon, D.S. Ebel, Z.R. Dai, P. Cordier, B. Clark, M. Chi, A.L. Butterworth, D.E. Brownlee, J.C. Bridges, S. Brennan, A. Brearley, J.P. Bradley, P. Bleuet, P.A. Bland, R. Bastien, Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735 (2006). https://doi.org/10.1126/science.1135842

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper was made possible by the International Space Science Institute, Bern, who brought the authors together for a whole week in 2016 and supported the meeting location and stay of the participants. All of the authors acknowledge their respective institutes and funding agencies for their support. In particular, JMTR thanks Spanish Ministry of Science and Innovation under research project AYA2015-67175-P. We acknowledge the hard work done by two referees whose comments were extremely valuable to improve this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Koschny.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cosmic Dust from the Laboratory to the Stars

Edited by Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle Sterken and Andrew Westphal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koschny, D., Soja, R.H., Engrand, C. et al. Interplanetary Dust, Meteoroids, Meteors and Meteorites. Space Sci Rev 215, 34 (2019). https://doi.org/10.1007/s11214-019-0597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-019-0597-7

Keywords

Navigation